13.四棱錐P-ABCD的五個頂點都在一個球面上,底面ABCD是矩形,其中AB=3,BC=4,又PA⊥平面ABCD,PA=5,則該球的表面積為50π.

分析 把四棱錐補成長方體,根據(jù)長方體的對角線長等于球的直徑求得外接球的半徑,代入球的表面積公式計算.

解答 解:把四棱錐補成長方體,則四棱錐的外接球是長方體的外接球,
∵長方體的對角線長等于球的直徑,
∴2R=$\sqrt{9+16+25}$=5$\sqrt{2}$,
∴R=$\frac{5\sqrt{2}}{2}$,
外接球的表面積S=4πR2=50π.
故答案為:50π.

點評 本題考查了棱錐的外接球的表面積的求法,利用長方體的對角線長等于球的直徑求得外接球的半徑是解答此題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=90°,且PA⊥AB,PD⊥CD.
(1)判斷CD是否和平面PAD垂直;
(2)證明:面PAD⊥面ABCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=2sin(2x+$\frac{π}{3}$)+a的最大值為1.
(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)將f(x)的圖象向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,若方程g(x)=m在x∈[0,$\frac{π}{2}$]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=ex,對于實數(shù)m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),則p的最大值等于2ln2-ln3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知正四面體的棱長$\sqrt{2}$,則其外接球的表面積為( 。
A.B.12πC.$\frac{\sqrt{3}}{2}$πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知直線y=x+m和圓x2+y2=1交于A、B兩點,O為坐標原點,若$\overrightarrow{AO}•\overrightarrow{AB}=\frac{3}{2}$,則實數(shù)m=( 。
A.±1B.$±\frac{{\sqrt{3}}}{2}$C.$±\frac{{\sqrt{2}}}{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,直線OA與截面ABC所成的角為30°,則球O的表面積為( 。
A.B.16πC.$\frac{4}{3}$πD.$\frac{16}{3}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知圓C:(x-3)2+(y-4)2=1和兩點 A(-m,0),B(m,0)(m>0),若圓上存在點 P,使得∠APB=90°,則m的取值范圍是[4,6].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線ax-by+c=0(abc≠0)與圓O:x2+y2=1相離,且|a|+|b|>|c|,則|a|,|b|,|c|為邊長的三角形是(  )
A.銳角三角形B.直角三角形C.鈍角三角形D.不存在

查看答案和解析>>

同步練習冊答案