坐標(biāo)系與參數(shù)方程
已知圓錐曲線為參數(shù))和定點(diǎn)F1,F(xiàn)2是圓錐曲線的左右焦點(diǎn)。
(1)求經(jīng)過(guò)點(diǎn)F2且垂直于直線AF1的直線l的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程。
(1) (2)

試題分析:(1)利用三角函數(shù)中的平方關(guān)系消去參數(shù)θ,將圓錐曲線化為普通方程,從而求出其焦點(diǎn)坐標(biāo),再利用直線的斜率求得直線L的傾斜角,最后利用直線的參數(shù)方程形式,即可得到直線L的參數(shù)方程.
(2)設(shè)P(ρ,θ)是直線AF2上任一點(diǎn),利用正弦定理列出關(guān)于ρ、θ的關(guān)系式,化簡(jiǎn)即得直線AF2的極坐標(biāo)方程.
解:(1)圓錐曲線
化為普通方程) 
所以則直線的斜率
于是經(jīng)過(guò)點(diǎn)且垂直于直線的直線l的斜率
直線l的傾斜角為
所以直線l參數(shù)方程,
(2)直線AF2的斜率k=- ,傾斜角是120°,設(shè)P(ρ,θ)是直線AF2上任一點(diǎn)即ρsin(120°-θ)=sin60°,化簡(jiǎn)得ρcosθ+ρsinθ=,故可知
點(diǎn)評(píng):本小題主要考查簡(jiǎn)單曲線的極坐標(biāo)方程、直線的參數(shù)方程、橢圓的參數(shù)方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在極坐標(biāo)系中,直線,被圓所截得的弦長(zhǎng)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把極坐標(biāo)系中的方程化為直角坐標(biāo)形式下的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列結(jié)論中不正確的是(     )
A.是關(guān)于極軸對(duì)稱B.是關(guān)于極點(diǎn)對(duì)稱
C.是關(guān)于極軸對(duì)稱D.是關(guān)于極點(diǎn)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

曲線的參數(shù)方程為為參數(shù)),將曲線上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍,得到曲線.
(Ⅰ)求曲線的普通方程;
(Ⅱ)已知點(diǎn),曲線軸負(fù)半軸交于點(diǎn),為曲線上任意一點(diǎn), 求
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在極坐標(biāo)系中,圓ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,求實(shí)數(shù)a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

極坐標(biāo)方程分別為的兩個(gè)圓的圓心距離為_(kāi)________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線為參數(shù))與圓(為參數(shù))的位置關(guān)系是
A.相離            B.相切           C.過(guò)圓心           D.相交不過(guò)圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在極坐標(biāo)系中,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱         

查看答案和解析>>

同步練習(xí)冊(cè)答案