已知lgM+lgN=2lg(M-2N),求log
2
M
N
的值.
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由lgM+lgN=2lg(M-2N),可得MN=(M-2N)2,且M>2N>0.解得
M
N
即可得出.
解答: 解:∵lgM+lgN=2lg(M-2N),
∴MN=(M-2N)2,且M>2N>0.
解得
M
N
=4.
log
2
M
N
=log
2
4
=4.
點(diǎn)評(píng):本題考查了對(duì)數(shù)運(yùn)算法則、一元二次方程的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
ln(x2-2x+2)
x
-
1
4

(1)判斷函數(shù)f(x)在區(qū)間(0,2)上的單調(diào)性;
(2)若函數(shù)f(x)在(0,2)上有兩個(gè)零點(diǎn)x1,x2,求證:f(
x1+x2
2
)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正六邊形ABCDEF的中心在坐標(biāo)原點(diǎn),外接圓半徑為2,頂點(diǎn)AD在x軸上,求以A、D為焦點(diǎn),且過(guò)點(diǎn)E的雙曲線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+1)-ax(a∈R).
(Ⅰ)若a=1,求證:當(dāng)x>0時(shí),f(x)<0;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:(1+
1
2
)(1+
1
4
)…(1+
1
2n
)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩直線(xiàn)l1:x+y
1-cosθ
+b=0,l2:xsinθ+y
1+cosθ
-a=0,θ∈(π,
3
2
π),則直線(xiàn)l1和l2的位置關(guān)系是( 。
A、平行B、平行或重合
C、垂直D、相交但不一定垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意x∈[0,2],總存在t∈(0,2],使得ex(x2-3x+1)≤at2+2t成立,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={m|(m-11)(m-16)≤0,m∈N},若(x3-
1
x2
n(n∈M)的二項(xiàng)展開(kāi)式中存在常數(shù)項(xiàng),則n等于( 。
A、16B、15C、14D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在定義域內(nèi)是減函數(shù)的是(  )
A、f(x)=-
1
x
B、f(x)=
x
C、f(x)=2-x
D、f(x)=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)C上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-
3
,0)和F2(
3
,0)的距離之和為4.
(1)求曲線(xiàn)C的方程;
(2)設(shè)過(guò)(0,-2)的直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn),且
OA
.
OB
=0(O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案