8.若g(x)=1-2x,f[g(x)]=$\frac{1-x}{1+x}$,則f(4)=( 。
A.-5B.5C.-10D.10

分析 直接利用函數(shù)的解析式求解函數(shù)值即可.

解答 解:g(x)=1-2x,f[g(x)]=$\frac{1-x}{1+x}$,f(1-2x)=$\frac{1-x}{1+x}$,
g(x)=4可得1-2x=4,解得x=$-\frac{3}{2}$.
則f(4)=f(1-2($-\frac{3}{2}$))=$\frac{1-(-\frac{3}{2})}{1-\frac{3}{2}}$=-5.
故選:A.

點評 本題考查函數(shù)解析式的應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.設f(x)是定義在R上的奇函數(shù),且在[0,+∞)上單調(diào)遞增,則f(-3),f(-4)的大小關(guān)系是( 。
A.f (-3)>f (-4)B.f (-3)<f (-4)C.f (-3)=f (-4)D.無法比較

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設n是一個正整數(shù),定義n個實數(shù)a1,a2,…,an的算術(shù)平均值為$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$.設集合 M={1,2,3,…,2015},對 M的任一非空子集 Z,令αz表示 Z中最大數(shù)與最小數(shù)之和,那么所有這樣的αz的算術(shù)平均值為2016.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.一個正方體內(nèi)接于半徑為R的球,則該正方體的體積是(  )
A.2$\sqrt{2}$R3B.$\frac{4}{3}$πR3C.$\frac{8}{9}$$\sqrt{3}$R3D.$\frac{\sqrt{3}}{9}$R3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,三邊長a,b,c,滿足a+c=3b,則$tan\frac{A}{2}tan\frac{C}{2}$的值為(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.數(shù)列a,a,a,a…,(a∈R)必為( 。
A.等差數(shù)列B.等比數(shù)列
C.既是等差數(shù)列,又是等比數(shù)列D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.由x,y滿足的約束條件,作出可行域如圖中陰影部分(含邊界)所示,則目標函數(shù)z=3x-y的最大值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設O是拋物線的頂點,F(xiàn)為焦點,PQ是拋物線的過F的弦,若|OF|=a,|PQ|=b,求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在圓柱內(nèi)有一個內(nèi)接正三棱錐,過一條側(cè)棱和高作截面,正確的截面圖形是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案