設定義域為R的函數(shù)f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關于x的方程f2(x)-(2m+1)f(x)+m2=0有5個不同的實數(shù)解,則m=( 。
分析:故先根據(jù)題意作出f(x)的簡圖,令t=f(x),則由題意可得關于t的方程t2-(2m+1)t+m2=0有一根為t=4,另一個根大于4或等于0,把t=4代入方程t2-(2m+1)t+m2=0
求得m=2或m=6.經(jīng)過檢驗,只有m=6滿足條件.
解答:解:∵題中原方程f2(x)-(2m+1)f(x)+m2=0有5個不同的實數(shù)根,結合函數(shù)f(x)的圖象可得,
令t=f(x),則關于t的方程t2-(2m+1)t+m2=0有一根為t=4,另一個根大于4或等于0.
把t=4代入方程t2-(2m+1)t+m2=0求得m=2或m=6.
當m=2時,關于t的方程t2-(2m+1)t+m2=0有一根為t=4,另一個根等于1,不滿足條件.
當m=6時,關于t的方程t2-(2m+1)t+m2=0有一根為t=4,另一個根等于9,滿足條件.
故答案為:6.
點評:本題主要考查方程的根的存在性以及根的個數(shù)判斷,數(shù)形結合是數(shù)學解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì);另外,由于使用了數(shù)形結合的方法,很多問題便迎刃而解,且解法簡捷,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設定義域為R的函數(shù)f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關于x的方程f2(x)-(2m+1)f(x)+m2=0有7個不同的實數(shù)根,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義域為R的函數(shù)f(x)=
-2x+a2x+1+b
(a,b為實數(shù))若f(x)是奇函數(shù).
(1)求a與b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)證明對任何實數(shù)x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義域為R的函數(shù)f(x)=
|lg|x-1||,x≠1
0,          x=1
,則關于x的方程f2(x)+bf(x)+c=0有7個不同實數(shù)解的充要條件是 ( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義域為R的函數(shù)f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若關于x的方程f2(x)+bf(x)+c=0有三個不同的實數(shù)解x1、x2、x3,則x12+x22|x32等于(  )

查看答案和解析>>

同步練習冊答案