5.(1-2x)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7則代數(shù)式a12+2a1a2+3a1a3+4a1a4+5a1a5+6a1a6+7a1a7的值為(  )
A.98B.-98C.-196D.196

分析 由(1-2x)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,兩邊求導(dǎo)可得:7×(-2)×(1-2x)6=a1+2a2x+…+7a7x6.令x=0,可得a1.令x=1,可得:a1+2a2+…+7a7.即可得出.

解答 解:由(1-2x)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,
兩邊求導(dǎo)可得:7×(-2)×(1-2x)6=a1+2a2x+…+7a7x6
令x=0,可得a1=-14.令x=1,可得:a1+2a2+…+7a7=-14.
∴a12+2a1a2+3a1a3+4a1a4+5a1a5+6a1a6+7a1a7=a1(a1+2a2+…+7a7)=-14×(-14)=196.
故選:D.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用、方程的思想、導(dǎo)數(shù)的運(yùn)算法則,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcosθ-ρsinθ=2,曲線C的方程為y2=2px(p>0).
(Ⅰ)設(shè)t為l參數(shù),若$x=-2+\frac{{\sqrt{2}}}{2}t$,求直線l的參數(shù)方程;
(Ⅱ)直線與曲線C交于P,Q,設(shè)M(-2,-4),且|PQ|2=|MP|•|MQ|,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=45,且a3,a5,a9恰為等比數(shù)列{bn}的前三項(xiàng),記cn=(bn-am)(bn+1-am).
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若m=17,求cn取得最小值時n的值;
(3)當(dāng)c1為數(shù)列{cn}的最小項(xiàng)時,m有相應(yīng)的可取值,我們把所有am的和記為A1;…;當(dāng)ci為數(shù)列{cn}的最小項(xiàng)時,m有相應(yīng)的可取值,我們把所有am的和記為Ai;…,令Tn=A1+A2+…An,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)Tn是數(shù)列{an}的前n項(xiàng)之積,并滿足:Tn=1-an(n∈N*).
(Ⅰ)求a1,a2,a3
(Ⅱ)證明數(shù)列{$\frac{1}{{T}_{n}}$}等差數(shù)列;
(Ⅲ)令bn=$\frac{{a}_{n}}{{n}^{2}+n}$,證明{bn}前n項(xiàng)和Sn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為2$\sqrt{2}$,左焦點(diǎn)F(-1,0),若過點(diǎn)B(-2b,0)的直線與橢圓交于M,N兩點(diǎn).
(1)求橢圓G的標(biāo)準(zhǔn)方程;
(2)求證:∠MFB+∠NFB=π;
(3)求△FMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x2+2ax+3a2
(1)當(dāng)a=-1時,求不等式f(x)<-5的解集;
(2)若f(x)>0對任意實(shí)數(shù)x∈[-1,1]都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{x-2}{x+2}$ex
(Ⅰ)確定函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:函數(shù)g(x)=$\frac{2{e}^{x}-x-1}{2{x}^{2}}$在(0,+∞)上存在最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=asin2x+2asinx+cos2x,x∈[0,2π],當(dāng)x=$\frac{π}{6}$時,f(x)取得最大值,則a值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.集合A={x|2x2-3x≤0,x∈Z},B={x|1≤2x<32,x∈Z},集合C滿足A⊆C?B,則C的個數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

同步練習(xí)冊答案