如圖,三棱錐中,,
 
(Ⅰ)求證:
(Ⅱ)若,的中點(diǎn),求與平面所成角的正切值  
(Ⅰ)證明略;(Ⅱ) 

試題分析:(Ⅰ)根據(jù)直線與平面垂直的判定定理,只要找到和平面中兩條相交直線垂直就可以證明直線和平面垂直,那么再由平面和平面垂直的判定定理可知 ,證明中要把條件到結(jié)論敘述清楚;(Ⅱ)先根據(jù)這個(gè)條件做輔助線構(gòu)造出所求的線面角,再在三角形中根據(jù)解三角形的方法求得線面角的正切值,一定要注意線面角要找準(zhǔn),不能亂構(gòu)造
試題解析:解:(Ⅰ)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824022612717677.png" style="vertical-align:middle;" />,所以                    2分
又因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824022612982662.png" style="vertical-align:middle;" />,即 
所以                   4分
,所以                       6分
(Ⅱ)取中點(diǎn),連,則 

,所以,連結(jié),
就是與平面所成的角                   10分
設(shè),則,
所以                          15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面為菱形,,的中點(diǎn).

(1)若,求證:平面平面;
(2)點(diǎn)在線段上,,若平面平面,且,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD為平行四邊形,其中AB=, BD=BC=1, AA1=2,E為DC的中點(diǎn),F(xiàn)是棱DD1上的動(dòng)點(diǎn).

(1)求異面直線AD1與BE所成角的正切值;
(2)當(dāng)DF為何值時(shí),EF與BC1所成的角為90°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,底面為直角梯形的四棱錐中,AD∥BC,平面,BC=6.

(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐P ABC中,已知PA⊥平面ABC,△ABC是邊長為2的正三角形,D,E分別為PB,PC中點(diǎn)

(1)若PA=2,求直線AE與PB所成角的余弦值;
(2)若PA,求證:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,底面為直角梯形,、,,的中點(diǎn).

(1)求證:平面;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知:菱形所在平面與直角梯形所在平面互相垂直,,點(diǎn)分別是線段的中點(diǎn).

(1)求證:平面平面;
(2)點(diǎn)在直線上,且//平面,求平面與平面所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐的底面是正方形,⊥底面,且,點(diǎn)、分別為側(cè)棱、的中點(diǎn) 

(1)求證:∥平面;
(2)求證:⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法中:①平行于同一條直線的兩個(gè)平面平行;②平行于同一平面的兩個(gè)平面平行;③垂直于同一條直線的兩條直線平行;④垂直于同一平面的兩條直線平行.其中正確的說法個(gè)數(shù)為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案