【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .
(1)求直線和曲線的普通方程;
(2)已知點(diǎn),且直線和曲線交于兩點(diǎn),求 的值
【答案】(1),;(2)
【解析】
(1)消去曲線C中的參數(shù)可得C的普通方程,利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的普通方程.
(2)由直線的普通方程可知直線過(guò)P,寫(xiě)出直線的參數(shù)方程,與曲線C的普通方程聯(lián)立,利用直線參數(shù)的幾何意義及韋達(dá)定理可得結(jié)果.
(1)因?yàn)榍 的參數(shù)方程為 (為參數(shù)),所以消去參數(shù),
得曲線的普通方程為
因?yàn)橹本 的極坐標(biāo)方程為 ,即 ,
所以直線的普通方程為
(2)因?yàn)橹本經(jīng)過(guò)點(diǎn) ,所以得到直線的參數(shù)方程為 (為參數(shù))
設(shè) ,
把直線的參數(shù)方程代入曲線的普通方程,得,
則,
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí),.
(Ⅰ)若,求函數(shù)的解析式;
(Ⅱ)若,方程至少有兩個(gè)不等的解,求的取值集合;
(Ⅲ)若函數(shù)為上的單調(diào)減函數(shù),
①求的取值范圍;
②若不等式成立,求實(shí)數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】市實(shí)施全域旅游,將鄉(xiāng)村旅游公路建設(shè)與特色田園鄉(xiāng)村發(fā)展結(jié)合,精心打造全長(zhǎng)365公里的“1號(hào)公路”,對(duì)內(nèi)串聯(lián)區(qū)域內(nèi)主要景區(qū)景點(diǎn)和自然村,對(duì)外通達(dá)周邊縣(市),以路引景、為景串線,形成一個(gè)“大環(huán)小圈、內(nèi)連外引”的路網(wǎng)體系.如今的“1號(hào)公路”,不僅成為該市旅游業(yè)的“顏值擔(dān)當(dāng)”,更成為推動(dòng)鄉(xiāng)村振興的“實(shí)力擔(dān)當(dāng)”,農(nóng)村居住環(huán)境日益改善,新農(nóng)村別墅隨處可見(jiàn).圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面和是全等的等腰梯形,左右兩坡屋面和是全等的三角形.點(diǎn)在平面和上的射影分別為(即:平面,垂足為;,垂足為).已知,梯形的面積是面積的2.2倍..
(1)當(dāng)時(shí),求屋頂面積的大;
(2)求屋頂面積關(guān)于的函數(shù)關(guān)系式;
(3)已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為(為正的常數(shù)),下部主體造價(jià)與其高度成正比,比例系數(shù)為.現(xiàn)欲造一棟上、下總高度為的別墅,試問(wèn):當(dāng)為何值時(shí),總造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),.
(1)若的圖象在處的切線恰好也是圖象的切線.
①求實(shí)數(shù)的值;
②若方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
(2)當(dāng)時(shí),求證:對(duì)于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù), ,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)時(shí),有兩個(gè)零點(diǎn);
(3)若,函數(shù)在處取得最小值,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx與g(x)=log4(a2x﹣a),其中f(x)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)求函數(shù)g(x)的定義域;
(3)若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)在軸上的射影恰好是橢圓的右焦點(diǎn),橢圓另一個(gè)焦點(diǎn)是,且.
(1)求橢圓的方程;
(2)直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),求的內(nèi)切圓面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;
②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;
③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;
④兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.
⑤回歸直線恒過(guò)樣本點(diǎn)的中心,且至少過(guò)一個(gè)樣本點(diǎn);
⑥若的觀測(cè)值滿(mǎn)足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺。
⑦從統(tǒng)計(jì)量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤. 其中正確命題的序號(hào)是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com