2.已知各項互異的等比數(shù)列{an}中,a1=2,其前n項和為Sn,且a4+S4,a5+S5,a6+S6成等差數(shù)列,則S5=(  )
A.4B.7C.5D.$\frac{31}{8}$

分析 根據(jù)a4+S4,a5+S5,a6+S6成等差數(shù)列,根據(jù)等差數(shù)列性質求得,2a6-3a5+a4=0,則2q2-3q+1=0,即可求得q的值,根據(jù)等比數(shù)列前n項和公式,即可求得S5

解答 解:a4+S4,a5+S5,a6+S6成等差數(shù)列,
(a5+S5)-(a4+S4)=(a6+S6)-(a5+S5),
∴2a6-3a5+a4=0,即2q2-3q+1=0,q=$\frac{1}{2}$或q=1(舍去),
∴S5=$\frac{2×[1-(\frac{1}{2})^{5}]}{1-\frac{1}{2}}$=$\frac{31}{8}$,
故答案選:D.

點評 本題考查等比數(shù)列與等差數(shù)列的綜合應用,考查學生對等差數(shù)列性質的掌握,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在三棱錐A-BCD中,三條棱AB、BC、CD兩兩垂直,且AD與平面BCD成45°角,與平面ABC成30°角.
(1)由該棱錐相鄰的兩個面組成的二面角中,指出所有的直二面角;
(2)求AC與平面ABD所成角的大小;
(3)求二面角B-AD-C大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖在底面為正方形,側棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的首項a1>0,前n項和為Sn.數(shù)列$\left\{{\left.{\frac{S_n}{n}}\right\}}$是公差為$\frac{a_1}{2}$的等差數(shù)列.
(1)求$\frac{a_6}{a_2}$的值;
(2)數(shù)列{bn}滿足:bn+1+(-1)pnbn=2an,其中n,p∈N*.
(。┤魀=a1=1,求數(shù)列{bn}的前4k項的和,k∈N*;
(ⅱ)當p=2時,對所有的正整數(shù)n,都有bn+1>bn,證明:${2^{a_1}}$-${2^{2{a_1}-1}}$<b1<${2^{{a_1}-1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知復數(shù)z=3+i(i為虛數(shù)單位),則$\frac{z}{1+i}$的模為( 。
A.2$\sqrt{2}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設銳角△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且$\sqrt{3}$ccosA+$\sqrt{3}$acosC=2asinB
(1)求A
(2)若△ABC的面積為2$\sqrt{3}$,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若命題p:a∈(-4,0],則使p為真命題的充分不必要條件是( 。
A.a∈[0,4]B.a∈(0,4)C.a∈(-4,0]D.a∈(-4,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.一個幾何體的三視圖都是腰長為2 的等腰直角三角形,則這個幾何體的表面積為( 。
A.6+2$\sqrt{3}$B.2$\sqrt{3}$C.6D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.某村有2500人,其中青少年1000人,中年人900人,老年人600人,為了調查本村居民的血壓情況,采用分層抽樣的方法抽取一個樣本,若從中年人中抽取36人,從青年人和老年人中抽取的個體數(shù)分別為a,b,則直線ax+by+8=0上的點到原點的最短距離為$\frac{{\sqrt{34}}}{34}$.

查看答案和解析>>

同步練習冊答案