設(shè)函數(shù)定義域為,且.
設(shè)點是函數(shù)圖像上的任意一點,過點分別作直線和軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;(7分)
(3)設(shè)為坐標原點,求四邊形面積的最小值.(7分)
(1)在上是減函數(shù).(2) ;
(3)此時四邊形面積有最小值.
【解析】
試題分析:(1)、因為函數(shù)的圖象過點,
所以 2分
函數(shù)在上是減函數(shù). 4分
(2)、(理)設(shè) 5分
直線的斜率
則的方程 6分
聯(lián)立
9分
, 11分
(3) 12分
13分
∴, 14分
, 15分
∴ , 16分
17分
當且僅當時,等號成立.
∴此時四邊形面積有最小值. 18分
考點:本題主要考查函數(shù)的性質(zhì),均值定理的應(yīng)用,向量的坐標運算。
點評:綜合題,利用函數(shù)方程思想,得出面積表達式,進一步運用均值定理求面積的最小值,對數(shù)學式子變形能力要求較高。
科目:高中數(shù)學 來源:2014屆新課標版高三上學期第二次月考理科數(shù)學試卷(解析版) 題型:解答題
設(shè)函數(shù)定義域為,且.設(shè)點是函數(shù)圖像上的任意一點,過點分別作直線和 軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;
(3)設(shè)為坐標原點,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013上海市奉賢區(qū)高考一模文科數(shù)學試卷(解析版) 題型:解答題
設(shè)函數(shù)定義域為,且.
設(shè)點是函數(shù)圖像上的任意一點,過點分別作直線和軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點的橫坐標,求點的坐標(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標原點,求四邊形面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)函數(shù)定義域為,且.
設(shè)點是函數(shù)圖像上的任意一點,過點分別作直線和
軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點的橫坐標,求點的坐標(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標原點,求四邊形面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)函數(shù)定義域為,且.設(shè)點是函數(shù)圖像上的任意一點,過點分別作直線和軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點的橫坐標,求點的坐標(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標原點,求四邊形面積的最小值.(7分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com