【題目】已知函數(shù)上的偶函數(shù),對(duì)于任意都有成立,當(dāng),且時(shí),都有.給出以下三個(gè)命題:

①直線是函數(shù)圖像的一條對(duì)稱軸;

②函數(shù)在區(qū)間上為增函數(shù);

③函數(shù)在區(qū)間上有五個(gè)零點(diǎn).

問(wèn):以上命題中正確的個(gè)數(shù)有( ).

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

【答案】B

【解析】

根據(jù)題意,利用特殊值法分析可得,結(jié)合函數(shù)的奇偶性可得,

進(jìn)而可得,所以的周期為6;據(jù)此分析三個(gè)命題,綜合即可得答案.

解:根據(jù)題意,對(duì)于任意,都有成立,

,則

上的偶函數(shù),所以,則有,所以的周期為6

據(jù)此分析三個(gè)命題:

對(duì)于,函數(shù)為偶函數(shù),則函數(shù)的一條對(duì)稱軸為軸,又由函數(shù)的周期為6

則直線是函數(shù)圖象的一條對(duì)稱軸,正確;

對(duì)于,當(dāng),,且時(shí),都有,

則函數(shù)上為增函數(shù),

因?yàn)?/span>上的偶函數(shù),所以函數(shù),上為減函數(shù),

的周期為6,所以函數(shù),上為減函數(shù),錯(cuò)誤;

對(duì)于,3,的周期為6

所以,

函數(shù),上有四個(gè)零點(diǎn);錯(cuò)誤;

三個(gè)命題中只有是正確的;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某種設(shè)備的使用年限(年)與所支出的維修費(fèi)用 (萬(wàn)元)有如下統(tǒng)計(jì):

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

已知, .

(1)求, ;

(2)具有線性相關(guān)關(guān)系,求出線性回歸方程;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位擬從40名員工中選1人贈(zèng)送電影票,可采用下面兩種選法:

選法一:將這40名員工按1~40進(jìn)行編號(hào),并相應(yīng)地制作號(hào)碼為14040個(gè)號(hào)簽,把這40個(gè)號(hào)簽放在一個(gè)暗箱中攪勻,最后隨機(jī)地從中抽取1個(gè)號(hào)簽,與這個(gè)號(hào)簽編號(hào)一致的員工幸運(yùn)入選;

選法二:將39個(gè)白球與1個(gè)紅球(球除顏色外,其他完全相同)混合放在一個(gè)暗箱中攪勻,讓40名員工逐一從中摸取一個(gè)球,則摸到紅球的員工幸運(yùn)入選.試問(wèn):

1)這兩種選法是否都是抽簽法,為什么?

2)這兩種選法中每名員工被選中的可能性是否相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃面向高二年級(jí)文科學(xué)生開(kāi)設(shè)社會(huì)科學(xué)類和自然退坡在校本選修課程,某文科班有50名學(xué)生,對(duì)該班選課情況進(jìn)行統(tǒng)計(jì)可知:女生占班級(jí)人數(shù)的60%,選社會(huì)科學(xué)類的人數(shù)占班級(jí)人數(shù)的70%,男生有10人選自然科學(xué)類.

1)根據(jù)題意完成以下列聯(lián)表:

選擇自然科學(xué)類

選擇社會(huì)科學(xué)類

合計(jì)

男生

女生

2)判斷是否有99%的把握認(rèn)為科類的選擇與性別有關(guān)?

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)為,已知點(diǎn)為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.過(guò)弦的中點(diǎn)作拋物線準(zhǔn)線的垂線,垂足為,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形,的中點(diǎn),為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,且平面平面中點(diǎn),.

(1)求證:平面

(2)若,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求在點(diǎn)處的切線方程;

(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若對(duì)任意的上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,記

1)若,求的值;

2)在銳角中,角的對(duì)邊分別是,且滿足,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案