在正方體ABCD-A1B1C1D1中,M、N分別為棱AA1和BB1的中點(diǎn),則sin<,>的值為( )

A.
B.
C.
D.
【答案】分析:建立空間直角坐標(biāo)系,寫(xiě)出點(diǎn)的坐標(biāo),利用向量的坐標(biāo)公式求出兩個(gè)向量的坐標(biāo),利用向量的數(shù)量積公式求出兩個(gè)向量的夾角余弦,
利用三角函數(shù)的平方關(guān)系求出兩個(gè)向量的夾角正弦.
解答:解:設(shè)正方體棱長(zhǎng)為2,以D為坐標(biāo)原點(diǎn),DA為x軸,DC為y軸,DD1為z軸建立空間直角坐標(biāo)系,
則C(0,2,0),M(2,0,1),D1(0,0,2),N(2,2,1)
可知=(2,-2,1),=(2,2,-1),
,
=-,
由平方關(guān)系得
sin<,>=
故選B
點(diǎn)評(píng):本題考查向量的坐標(biāo)的求法、利用向量的數(shù)量積公式求向量的夾角余弦、三角函數(shù)的平方關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線BD′的一個(gè)平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結(jié)論正確的為
①③④
.(寫(xiě)出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點(diǎn),則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點(diǎn). 
(1)若M為BB′的中點(diǎn),證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線BD′的一個(gè)平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案