若x1和x2是方程x2-mx-2=0的兩個實(shí)根,不等式a2-5a-3≥|x1-x2|對任意實(shí)數(shù)m∈[-1,1]恒成立,則a的取值范圍是
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由韋達(dá)定理可得
x1+x2=m
x1x2=-2
,從而可得|x1-x2|=
(x1+x2)2-4x1x2
=
m2+8
;從而可得|x1-x2|max=3,從而化恒成立問題為a2-5a-3≥3,從而解得.
解答: 解:∵x1和x2是方程x2-mx-2=0的兩個實(shí)根,
x1+x2=m
x1x2=-2
;
∴|x1-x2|=
(x1+x2)2-4x1x2
=
m2+8
;
∴當(dāng)m∈[-1,1]時,|x1-x2|max=3;
故不等式a2-5a-3≥|x1-x2|對任意實(shí)數(shù)m∈[-1,1]恒成立可化為
a2-5a-3≥3;
解得a≥6或a≤-1.
故答案為:a≥6或a≤-1.
點(diǎn)評:本題考查了函數(shù)的性質(zhì)應(yīng)用及恒成立問題化為函數(shù)的最值問題處理的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x∈R|0<x<2},N={x∈R|x>1},則M∩(∁RN)=( 。
A、[1,2)
B、(1,2)
C、[0,1)
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于向量
a
,
b
c
的命題中,正確的有
 

(1)
a
b
=
b
c
a
=
c
   
(2)(
a
b
)•
c
=
a
•(
b
c
)   
(3)|
a
b
|=|
a
|×|
b
|
(4)|
a
+
b
|2=(
a
+
b
2    
(5)若
a
b
=0,則
a
,
b
中至少一個為
0

(6)若
a
b
,
b
c
,則
a
c
    
(7)若
a
b
b
c
,則
a
c

(8)若
a
b
共線,則存在一個實(shí)數(shù)λ,使得
b
a
成立
(9)與向量
a
平行的單位向量有兩個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某汽車的月生產(chǎn)總值平均增長率為p,則年平均生產(chǎn)總值的平均增長率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-|x-a|.
(1)當(dāng)a=3時,求不等式f(x)>7的解集;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x1,x2,x3,…,x2013的方差為3,則3(x1-2),3(x2-2),3(x3-2),…,3(x2013-2)的方差為( 。
A、3B、9C、18D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N*),經(jīng)計(jì)算得f(4)>2,f(8)>
5
2
,f(16)>3,f(32)>
7
2
…,觀察上述結(jié)果,可歸納出的一般結(jié)論為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(a+b)n的展開式中某一項(xiàng)的系數(shù)與a,b無關(guān).
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項(xiàng)式(1-2i)3(1-2i)3,則展開式的第四項(xiàng)為
 

查看答案和解析>>

同步練習(xí)冊答案