已知數(shù)列{an}中,a1=2,點(an,an+1)在直線y=2x上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N+),且b3=11,S9=153.
bn+2-2bn+1+bn=0
(Ⅰ)求數(shù)列{an},{bn}的通項;
(Ⅱ)設(shè)cn=an•bn,{cn}的前n項和為Tn,求Tn.
【答案】
分析:(I)由題意可得a
n+1=2a
n,即數(shù)列a
n為等比數(shù)列,代入等比數(shù)列的通項可求a
n;由b
n+2-2b
n+1+b
n=0⇒b
n+2-b
n+1=b
n+1-b
n,從而可得數(shù)列b
n為等差數(shù)列,結(jié)合題中所給條件可求公差d,首項b
1,進(jìn)一步可求數(shù)列的通項.
(II)由(I)可知數(shù)列a
nb
n分別為等差、等比數(shù)列,對數(shù)列c
n求和用錯位相減.
解答:解:(Ⅰ)點(a
n,a
n+1)在直線y=2x上,
∴
,數(shù)列{a
n}為等比數(shù)列,
又a
1=2,∴a
n=2
n.
∵b
n+2-2b
n+1+b
n=0,∴b
n+2-b
n+1=b
n+1-b
n═b
2-b
1即數(shù)列{b
n}為等差數(shù)列,∵b
1=11,S
9=153,設(shè)首項為b
1,公差為d.
b
1+2d=1
,解得b
1=5,d=3,∴b
n=3n+2
(Ⅱ)c
n=b
n•a
n=(3n+2)•2
n∴T
n=5•2+8•2
2++(3n+2)•2
n①
2T
n=5•2
2+8•2
3++(3n+2)•2
n+1②
①-②得:-T
n=5•2+3•2
2++3•2
n-(3n+2)•2
n+1∴T
n=(3n-1)•2
n+1+2
點評:本題主要考查了等差數(shù)列及等比數(shù)列的通項公式、定義,屬于對基本概念、基本公式的考查,還考查了求和方法的乘公比錯位相減求和,屬于基礎(chǔ)題中檔題.