|
|
已知直線l過圓x2+(y-3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是
|
[ ] |
A. |
x+y-2=0
|
B. |
x-y+2=0
|
C. |
x+y-3=0
|
D. |
x-y+3=0
|
|
|
答案:D
解析:
|
由題意可得所求直線l經(jīng)過點(0,3),斜率為1,故l的方程是y﹣3=x﹣0,即x﹣y+3=0,故選:D.
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)函數(shù).
(Ⅰ)證明:f(x)≥2;
(Ⅱ)若f(3)<5,求a的取值范圍.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)各項為正數(shù)的數(shù)列{an}的前n和為Sn,且Sn滿足.
-(n2+n-3)Sn-3(n2+n)=0,n∈N*
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,在平行四邊形ABCD中,點E在AB上且EB=2AE,AC與DE交于點F,則________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若集合P={x|2≤x<4},Q={x|x≥3},則P∩Q等于
|
[ ] |
A. |
{x|3≤x<4}
|
B. |
{x|3<x<4}
|
C. |
{x|2≤x<3}
|
D. |
{x|2≤x≤3}
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知圓C:(x-a)2+(y-b)2=1,設(shè)平面區(qū)域,若圓心C=Ω,且圓C與x軸相切,則a2+b2的最大值為
|
[ ] |
A. |
5
|
B. |
29
|
C. |
37
|
D. |
49
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)=2cosx(sinx+cos).
(1)求的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
要制作一個容器為4 m3,高為1 m的無蓋長方形容器,已知該容器的底面造價是每平方米20元,側(cè)面造價是每平方米10元,則該容器的最低總造價是________(單位:元)
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)雙曲線C經(jīng)過點(2,2),且與具有相同漸近線,則C的方程為________;漸近線方程為________.
|
|
|
查看答案和解析>>