要制作一個(gè)容器為4 m3,高為1 m的無(wú)蓋長(zhǎng)方形容器,已知該容器的底面造價(jià)是每平方米20元,側(cè)面造價(jià)是每平方米10元,則該容器的最低總造價(jià)是________(單位:元)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

在△ABC中,角A,B,C所對(duì)應(yīng)的變分別為a,b,c,則“a<b”是“sinA≤sinB”的

[  ]

A.

充分必要條件

B.

充分非必要條件

C.

必要非充分條件

D.

非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知直線l過(guò)圓x2+(y-3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是

[  ]

A.

x+y-2=0

B.

x-y+2=0

C.

x+y-3=0

D.

x-y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

復(fù)數(shù)z=(3-2i)i的共軛復(fù)數(shù)等于

[  ]

A.

-2-3

B.

-2+3i

C.

2-3i

D.

2+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

在下列向量組中,可以把向量=(3,2)表示出來(lái)的是

[  ]

A.

=(0,0),=(1,2)

B.

=(-1,2),=(5,-2)

C.

=(3,5),=(6,10)

D.

=(2,-3),=(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

為回饋顧客,某商場(chǎng)擬通過(guò)摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

(1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求

①顧客所獲的獎(jiǎng)勵(lì)額為60元的概率

②顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

(2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

下列函數(shù)中,定義域是R且為增函數(shù)的是

[  ]

A.

y=e-x

B.

y=x

C.

y=lnx

D.

y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知橢圓C:x2+2y2=4.

(1)求橢圓C的離心率;

(2)設(shè)O為原點(diǎn),若點(diǎn)A在直線y=2,點(diǎn)B在橢圓C上,且OA⊥OB,求線段AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

設(shè)函數(shù)f(x)=1+(1+a)-x2-x3,其中a>0

(1)討論f(x)在其定義域上的單調(diào)性;

(2)當(dāng)x∈[0,1]時(shí),求f(x)取得最大值和最小值時(shí)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案