16.已知f(x-1)=x2-2x,則f(x)的表達(dá)式是(  )
A.f(x)=x2-1B.f(x)=x2-xC.f(x)=x2+xD.f(x)=x2+1

分析 利用換元法,令t=x-1,則x=t+1,將f(x-1)=x2-2x轉(zhuǎn)化為g(t)=(t+1)2-2(t+1),從而求解.

解答 解:由題意:利用換元法,令t=x-1,則:x=t+1,
那么:函數(shù)f(x-1)=x2-2x轉(zhuǎn)化為g(t)=(t+1)2-2(t+1),
化簡得:g(t)=t2-1,
所以得f(x)的表達(dá)式是f(x)=x2-1.
故選A.

點(diǎn)評 本題考查了函數(shù)解析式的求法,利用了換元法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知各項為正的等比數(shù)列{an}中,a1與a17的等比中項為2,則4a7+a11的最小值為( 。
A.16B.8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}}\right.$.
(1)求x+2y最大值;
(2)若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,求$\frac{1}{a}$+$\frac{2}{3b}$的最小值;
(3)若目標(biāo)函數(shù)z=kx+y最小值的最優(yōu)解有無數(shù)個,求值k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義集合運(yùn)算:A?B={z|z=xy,x∈A,y∈B},設(shè)A={1,2},B={2,4},則集合A?B的所有元素之和為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow m$=(cos$\frac{x}{2}$,-1),$\overrightarrow n$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow m$•$\overrightarrow n$+1.
(1)若x∈[0,$\frac{π}{2}$],f(x)=$\frac{11}{10}$,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c-$\sqrt{3}$a,求角B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax(x≥0)的圖象經(jīng)過點(diǎn)(2,$\frac{1}{4}$),其中a>0且a≠1.
(1)求a的值;
(2)求函數(shù)y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C的兩條漸近線為x±2y=0且過點(diǎn)(2,$\sqrt{3}$),則雙曲線C的標(biāo)準(zhǔn)方程是( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1C.$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{2}$=1D.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知某商場新進(jìn)6000袋奶粉,為檢查其三聚氰胺是否超標(biāo),現(xiàn)采用系統(tǒng)抽樣的方法從中抽取150袋檢查,若第一組抽出的號碼是11,則第六十一組抽出的號碼為2411.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,且a=8,A=60°,若S△ABC=$\frac{{15\sqrt{3}}}{4}$,則△ABC的周長等于8+$\sqrt{109}$.

查看答案和解析>>

同步練習(xí)冊答案