已知l是一條直線,α,β是兩個不同的平面.若從“①l⊥α;②l∥β;③α⊥β”中選取兩個作為條件,另一個作為結論,試寫出一個你認為正確的命題 ________(請用代號表示)

①②→③
分析:先在平面β內(nèi)尋找一直線m∥l,然后根據(jù)題意可得m⊥α,最后根據(jù)面面垂直的判定定理進行判定即可.
解答:∵l∥β
∴平面β中存在一直線m∥l
∵l⊥α,
∴m⊥α,根據(jù)面面垂直的判定定理可知α⊥β
故答案為:①②→③
點評:本題主要考查了空間中直線與平面之間的位置關系,以及面面垂直的判定定理,同時考查了空間想象能力和推理能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

7、已知l是一條直線,α,β是兩個不同的平面.若從“①l⊥α;②l∥β;③α⊥β”中選取兩個作為條件,另一個作為結論,試寫出一個你認為正確的命題
①②→③
(請用代號表示)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省成都市高三第二次診斷性檢測文科數(shù)學試卷(解析版) 題型:選擇題

已知l是一條直線,平面a//平面β,則“”是“l(fā)//β”的[

 (A)充要條件      (B)充分不必要條件

(C)必要不充分條件(D)既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學 來源:鹽城二模 題型:填空題

已知l是一條直線,α,β是兩個不同的平面.若從“①l⊥α;②lβ;③α⊥β”中選取兩個作為條件,另一個作為結論,試寫出一個你認為正確的命題 ______(請用代號表示)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省南通市六縣一市高三(上)期末沖刺數(shù)學試卷(解析版) 題型:填空題

已知l是一條直線,α,β是兩個不同的平面.若從“①l⊥α;②l∥β;③α⊥β”中選取兩個作為條件,另一個作為結論,試寫出一個你認為正確的命題     (請用代號表示)

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省鹽城市高考數(shù)學二模試卷(解析版) 題型:解答題

已知l是一條直線,α,β是兩個不同的平面.若從“①l⊥α;②l∥β;③α⊥β”中選取兩個作為條件,另一個作為結論,試寫出一個你認為正確的命題     (請用代號表示)

查看答案和解析>>

同步練習冊答案