年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(1)求函數(shù)y=f(x)的表達(dá)式;
(2)若g(x)在點(diǎn)(3,g(3))處的切線與直線7x-18y+3=0平行,求函數(shù)g(x)的極值;
(3)若函數(shù)g(x)在(0,2)上單調(diào)遞減,求實數(shù)a的取值范圍.
(文)已知A、B、C是直線l上的三點(diǎn),且滿足:-(y+ax2)+(x3+3x)=0.
(1)若f(x)在點(diǎn)(1,f(3))處的切線與直線2x+y+3=0平行,求函數(shù)y=f(x)的極值;
(2)若函數(shù)y=f(x)在(-2,)上單調(diào)遞減,求實數(shù)口的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求{f(n)}、{g(n)}的通項公式;
(2)設(shè)cn=g[f(n)],求數(shù)列{cn}的前n項和;
(3)已知=0,設(shè)F(n)=Sn-3n,是否存在整數(shù)m和M,使得對任意正整數(shù)n,不等式m<F(n)<M恒成立?若存在,分別求出m和M的集合,并求出M-m的最小值;若不存在,請說明理由.
(文)已知f(x)=x3-3x,g(x)=2ax2.
(1)當(dāng)-≤a≤時,求證:F(x)=f(x)-g(x)在(-1,1)上是單調(diào)函數(shù);
(2)若g′(x)≤〔g′(x)為g(x)的導(dǎo)函數(shù)〕在[-1,]上恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com