(1)求{f(n)}、{g(n)}的通項(xiàng)公式;
(2)設(shè)cn=g[f(n)],求數(shù)列{cn}的前n項(xiàng)和;
(3)已知=0,設(shè)F(n)=Sn-3n,是否存在整數(shù)m和M,使得對任意正整數(shù)n,不等式m<F(n)<M恒成立?若存在,分別求出m和M的集合,并求出M-m的最小值;若不存在,請說明理由.
(文)已知f(x)=x3-3x,g(x)=2ax2.
(1)當(dāng)-≤a≤時(shí),求證:F(x)=f(x)-g(x)在(-1,1)上是單調(diào)函數(shù);
(2)若g′(x)≤〔g′(x)為g(x)的導(dǎo)函數(shù)〕在[-1,]上恒成立,求a的取值范圍.
答案:(理)解:(1)取x=n,則f(n+1)=f(n).取x=0,得f(1)=f(0)=1.
故{f(n)}是首項(xiàng)為1,公比為的等比數(shù)列.∴f(n)=()n-1.
取x=n,y=1,得g(n+1)=g(n)+2(n∈N*),即g(n+1)-g(n)=2.
∴g(n)是公差為2的等差數(shù)列.又g(5)=13,因此g(n)=13+2(n-5)=2n+3,即g(n)=2n+3.
(2)∵cn=g[f(n)]=g[()n-1]=n()n-1+3,∴Sn=c1+c2+…+cn=1+2×()+3×()2+…+(n-1)()n-2+n()n-1+3n,Sn=+2×()2+…+(n-1)()n-1+n()n+n.
兩式相減,得Sn=1++()2+…+()n-1-n()n+2n=-n()n+2n,
Sn=[1-()n]-()n+3n=-()n-1-()n-1+3n=.
(3)∵F(n)=Sn-3n=·()n-1,∴F(n+1)-F(n)=.
∴F(n)為增函數(shù).故F(n)min=F(1)=1.∵=0,∴F(n)=.又·()n-1>0,F(n)<,∴1≤F(n)<.因此,當(dāng)m<1,且M≥時(shí)m<F(n)<M恒成立.
∴存在整數(shù)m=0,-1,-2,-3,…,M=3,4,5,6,…,使得對任意正整數(shù)n,不等式m<F(n)<M恒成立.
此時(shí),m的集合是{0,-1,-2,-3,…},M的集合是{3,4,5,6,…},且(M-m)min=3.
(文)(1)證明:∵F(x)=x3-3x-2ax2,∴F′(x)=2x2-4ax-3=2(x-a)2-2a2-3,F′(1)=-4a-1,F′(-1)=4a-1.
又∵-≤a≤,∴F′(-1)≤0,F′(1)≤0.導(dǎo)函數(shù)F′(x)在[-1,1]上的最大值為F′(1)或F′(-1),F′(x)在(-1,1)上總有F′(x)<0,故F(x)=x3-3x-2ax2在(-1,1)上單調(diào)遞減.
(2)解:g′(x)=4ax.
①當(dāng)x=0時(shí),不等式g′(x)≤顯然成立.
②當(dāng)-1≤x<0時(shí),不等式4ax≤可化為a≥.
而u(x)=(-1≤x<0)的最大值為-,∴a≥-.
③當(dāng)0<x≤時(shí),不等式4ax≤可化為a≤.
而當(dāng)0<x≤時(shí),x(1-x)的最大值為,u(x)=(0<x≤)的最小值為1.故a滿足條件的取值范圍是(-∞,1].綜上所述,得-≤a≤1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
8 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
π |
2 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4a |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年甘肅省慶陽市隴東中學(xué)高考數(shù)學(xué)三模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com