A. | $\frac{9}{2}$ | B. | 6 | C. | $\frac{15}{2}$ | D. | 9 |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識即可得到結(jié)論.
解答 解:作出不等式組滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$的平面區(qū)域如圖
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
則當(dāng)直線y=-2x+z經(jīng)過點B時,目標函數(shù)取得最大值,經(jīng)過A時,取得最小值,由$\left\{\begin{array}{l}{y=-1}\\{y=x}\end{array}\right.$,可得A(-1,-1)時,
此時直線的截距最小,此時n=-3,
由$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$,可得B(2,-1)
此時m=3,
2m-n=9.
故選:D.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 4$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=1 | B. | x=-1 | C. | x=2 | D. | x=-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com