16.一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,則其體積等于( 。
A.2$\sqrt{3}$B.4$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

分析 一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,可知三棱柱是以底面邊長(zhǎng)為2,高為2的正三棱柱,再求解體積即可.

解答 解:由正視圖知:三棱柱是以底面邊長(zhǎng)為2,高為2的正三棱柱,
所以體積為V=Sh=$\frac{\sqrt{3}}{4}×4×2$=2$\sqrt{3}$.
故選A.

點(diǎn)評(píng) 本題考查立體幾何中的三視圖,考查同學(xué)們識(shí)圖的能力、空間想象能力等基本能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=|x-3|+|x-1|,若存在x∈R,使f(x)≥2a,則實(shí)數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓的方程為(x-1)2+(y-1)2=9,P(2,2)是該圓內(nèi)一點(diǎn),過(guò)點(diǎn)P的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積是6$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,x),若$\overrightarrow{a}$與$\overrightarrow$平行,則x=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知a∈R,p:關(guān)于x的方程x2-2x+a=0有兩個(gè)不等實(shí)根;q:方程$\frac{{x}^{2}}{a-3}+\frac{{y}^{2}}{a+1}=1$表示雙曲線(xiàn).若p∨q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖矩形ABCD的長(zhǎng)為2cm,寬為1cm,它是水平放置的一個(gè)平面圖形的直觀(guān)圖,則原圖形的周長(zhǎng)是( 。    
A.10cmB.8cmC.$(2\sqrt{3}+4)cm$D.$4\sqrt{2}cm$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若圓錐的側(cè)面展開(kāi)圖是圓心角為90°的扇形,則這個(gè)圓錐的側(cè)面積與底面積的比是4:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.給出命題:“若b=3,則b2=9”.在它的逆命題、否命題、逆否命題三個(gè)命題中,真命題的個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,且z=2x+y的最大值和最小值分別為m和n,則2m-n的值為( 。
A.$\frac{9}{2}$B.6C.$\frac{15}{2}$D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案