9.過曲線y=$\frac{1}{8}$x4上一點(diǎn)P(2,2)的切線的斜率是(  )
A.1B.2C.4D.8

分析 求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的切線的斜率,代入x=2,即可得到所求斜率.

解答 解:y=$\frac{1}{8}$x4的導(dǎo)數(shù)為y′=$\frac{1}{2}$x3
即有曲線y=$\frac{1}{8}$x4上一點(diǎn)P(2,2)的切線的斜率為:
k=$\frac{1}{2}$×23=4.
故選:C.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的切線的斜率,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=sin2x和函數(shù)g(x)的部分圖象如圖所示,則函數(shù)g(x)的解析式可以是( 。
A.g(x)=sin(2x-$\frac{π}{3}}$)B.g(x)=sin(2x+$\frac{2π}{3}}$)C.g(x)=cos(2x+$\frac{5π}{6}}$)D.g(x)=cos(2x-$\frac{π}{6}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在如圖所示的幾何體ABCDE中,AE⊥平面DCE,BE=$\sqrt{6}$,DC=4,BD=2,CE=2$\sqrt{3}$,∠BCD=30°,CE⊥AD.
(Ⅰ)求證:AE∥平面BCD;
(Ⅱ)若AE=4$\sqrt{3}$,求二面角D-AC-E(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|$\frac{16x-7}{x-2}$≤0},B={x||x-m2|$≥\frac{1}{4}$},命題p:x∈A,命題q:x∈B,且命題p是命題q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線x=1,x=2,y=0及曲線y=x3圍成的平面圖形的面積為(  )
A.$\sum_{i=1}^{n}$$\frac{1}{n}$(1+$\frac{i}{n}$)3B.${∫}_{1}^{2}$x3dxC.${∫}_{2}^{1}$x3dxD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求圓心在A(2,$\frac{3π}{2}$)處并且過極點(diǎn)的圓的極坐標(biāo)方程,并判斷點(diǎn)(-2,sin$\frac{5π}{6}$)是否在這個(gè)圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知四邊形ABCD的邊長分別為AB=1,BC=3,CD=DA=2,且A+C=180°,則四邊形ABCD的面積為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列各組向量中互相垂直的是(  )
A.$\overrightarrow{a}$=(-3,5),$\overrightarrow$=(-1,5)B.$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-3,-2)C.$\overrightarrow{a}$=(3,4),$\overrightarrow$=(4,-3)D.$\overrightarrow{a}$=(-3,3),$\overrightarrow$=(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在銳角△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且2a-b=2ccosB.
(Ⅰ)求角C的大;
(Ⅱ)若a=2,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案