4.直線x=1,x=2,y=0及曲線y=x3圍成的平面圖形的面積為( 。
A.$\sum_{i=1}^{n}$$\frac{1}{n}$(1+$\frac{i}{n}$)3B.${∫}_{1}^{2}$x3dxC.${∫}_{2}^{1}$x3dxD.1

分析 利用定積分表示區(qū)域面積,即可得出結(jié)論.

解答 解:由題意,直線x=1,x=2,y=0及曲線y=x3圍成的平面圖形的面積為S=${∫}_{1}^{2}$x3dx,
故選:B.

點評 本小題考查根據(jù)定積分的幾何意義,以及會利用定積分求圖形面積的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|x2+2x-8≥0},B={x|1<x<5},U=R,則CU(A∪B)( 。
A.(-4,1]B.[-4,1)C.(-2,1]D.[-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知拋物線C1:y2=16x上的點P到圓C2:(x-4)2+y2=$\frac{32}{41}$的圓心的距離等于8,則拋物線C1在點P處的切線l1與C2經(jīng)過點P的切線l2構(gòu)成的角中,較小的角θ的正切值等于$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,三棱柱ABC-A1B1C1中,A1C⊥底面ABC,∠ACB=120°,A1C=AC=BC=2,D為AB中點.
(1)求證:平面A1CD⊥平面A1AB;
(2)求二面角A1-BC-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知sin22α+sin2αcosα-cos2α=1,求銳角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.過曲線y=$\frac{1}{8}$x4上一點P(2,2)的切線的斜率是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.直線l經(jīng)過兩直線l1:2x-3y+8=0,l2:3x+4y-5=0的交點A.
(1)求與直線3x-2y+4=0平行的直線l的方程;
(2)若原點O到直線l距離等于1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.$\overrightarrow{a}•\overrightarrow$=6,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2$\sqrt{2}$,則,<$\overrightarrow{a}$,$\overrightarrow$>=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的導(dǎo)數(shù):
(1)y=(2x2+3x+1)5;
(2)y=esinx
(3)y=tan$\frac{1}{x}$;
(4)y=$\sqrt{1-{x}^{2}}$;
(5)y=ln(lnx);
(6)y=cos(2x+$\frac{π}{6}$);
(7)y=ln$\frac{x-1}{x+1}$;
(8)y=2xcos3x;
(9)y=x2lnx.

查看答案和解析>>

同步練習(xí)冊答案