A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 由題意可知,函數(shù)為周期函數(shù),作函數(shù)的圖象解答.
解答 解:∴函數(shù)y=f(x)(x∈R)滿足f(x+1)=-f(x),
∴f(x)的周期為2,
又∵當(dāng)x∈[-1,0)時,$f(x)=\frac{{{x^2}+1}}{2}$,
作出函數(shù)y=f(x)的圖象與函數(shù)y=log3|x|的圖象如下:
由圖可得:函數(shù)y=f(x)的圖象與函數(shù)y=log3|x|的圖象的交點(diǎn)的個數(shù)是4個,
故選:C
點(diǎn)評 本題考查了學(xué)生的作圖能力及化簡能力,數(shù)形結(jié)合思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞減 | B. | 在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞增 | ||
C. | 在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞減 | D. | 在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com