10.已知$\overrightarrow a=(-3,4,2),\overrightarrow b=(2,1,5)$
求(1)$\overrightarrow a+\overrightarrow b$
(2)$\overrightarrow a-\overrightarrow b$.

分析 由已知條件利用空間向量的坐標(biāo)運(yùn)算公式直接求解.

解答 解:(1)∵$\overrightarrow a=(-3,4,2),\overrightarrow b=(2,1,5)$
∴$\overrightarrow a+\overrightarrow b$=(-1,5,7).
(2)∵$\overrightarrow a=(-3,4,2),\overrightarrow b=(2,1,5)$
∴$\overrightarrow{a}-\overrightarrow$=(-5,3,-3).

點(diǎn)評(píng) 本題考查空間向量的坐標(biāo)運(yùn)算,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量的坐標(biāo)運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.與圓C1:x2+y2-2x-2y+1=0和直線l:y+1=0都相切的圓的圓心軌跡方程是$(x-1)^{2}=6(y+\frac{1}{2})$和$(x-1)^{2}=2(y-\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=$\frac{{{x^2}+1}}{2x+m}$是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在(-∞,-1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)上是增函數(shù),f(2)=0,則x[f(x)-f(-x)]<0的解集為(-2,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)f(x)為偶函數(shù),且在(0,+∞)上是減函數(shù),又f(4)=0,則$\frac{f(x)+f(-x)}{3x}$<0的解集(-4,0)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班25位女同學(xué),15位男同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,男、女生各抽取多少位才符合抽樣要求?
(2)隨機(jī)抽出8位,他們的物理、化學(xué)分?jǐn)?shù)對(duì)應(yīng)如下表:
學(xué)生編號(hào)12345678
物理分?jǐn)?shù)x6065707580859095
化學(xué)分?jǐn)?shù)y7277808488909395
根據(jù)上表數(shù)據(jù)用變量y與x的散點(diǎn)圖說(shuō)明化學(xué)成績(jī)y與物理成績(jī)x之間是否具有線性相關(guān)性?如果具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)性,請(qǐng)說(shuō)明理由.
參考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline{y}$-b$\overline{x}$;  參考數(shù)據(jù):$\overline{x}$=77.5,$\overline{y}$=84.875.
$\sum_{i=1}^{8}$(xi-x)2=1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈457,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)≈688.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=|x-2|.
(1)解不等式f(x)+f(x+1)≤2;
(2)若a>0,求證:f(ax)-af(x)≤2f(a+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]是增函數(shù),設(shè)a=f(log47),b=f(log${\;}_{\frac{1}{2}}$3),c=f(0.20.6),則a,b,c的大小關(guān)系是b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(I)求|2x-1|+|2x+3|<5的解集;
(II)設(shè)a,b,c均為正實(shí)數(shù),試證明不等式$\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}≥\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}$,并說(shuō)明等號(hào)成立的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案