已知函數(shù)f(x)=ax3+(a-2)x+c的圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)若g(x)=-2ln x在其定義域內(nèi)為增函數(shù),求實數(shù)k的取值范圍.
(1)f(x)=x3-x+3
(2)[1,+∞)
【解析】(1)∵f′(x)=ax2+a-2,
由圖可知函數(shù)f(x)的圖象過點(0,3),且f′(1)=0.
得即
∴f(x)=x3-x+3.
(2)∵g(x)=-2ln x=kx--2ln x,
∴g′(x)=k+-=.
∵函數(shù)y=g(x)的定義域為(0,+∞),
∴若函數(shù)y=g(x)在其定義域內(nèi)為單調(diào)增函數(shù),則函數(shù)g′(x)≥0在(0,+∞)上恒成立,即kx2+k-2x≥0在區(qū)間(0,+∞)上恒成立.
即k≥在區(qū)間(0,+∞)上恒成立.
令h(x)=,x∈(0,+∞),
則h(x)==≤1(當(dāng)且僅當(dāng)x=1時取等號).
∴k≥1.
∴實數(shù)k的取值范圍是[1,+∞).
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:選擇題
(2014·大連模擬)已知f(x)=alnx+x2,若對任意兩個不等的正實數(shù)x1,x2都有>0成立,則實數(shù)a的取值范圍是( )
A.[0,+∞) B.(0,+∞)
C.(0,1) D.(0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題
已知函數(shù)y=cos(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示,則( )
A.ω=1,φ=
B.ω=1,φ=-
C.ω=2,φ=
D.ω=2,φ=-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題
在棱長為1的正方體AC1中,E為AB的中點,點P為側(cè)面BB1C1C內(nèi)一動點(含邊界),若動點P始終滿足PE⊥BD1,則動點P的軌跡的長度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題
(2014·泰安模擬)設(shè)a是空間中的一條直線,α是空間中的一個平面,則下列說法正確的是( )
A.過a一定存在平面β,使得β∥α
B.過a一定存在平面β,使得β⊥α
C.在平面α內(nèi)一定不存在直線b,使得a⊥b
D.在平面α內(nèi)一定不存在直線b,使得a∥b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:填空題
定義在R上的函數(shù)f(x)滿足f(x)=,則f(2 013)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題
函數(shù)y=xcos x+sin x的圖象大致為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題
已知橢圓C的方程為(m>0),如果直線y=x與橢圓的一個交點M在x軸上的射影恰好是橢圓的右焦點F,則m的值為( )
A.2 B.2
C.8 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題
已知函數(shù)f(x)=x3+ax2+bx+c有兩個極值點x1,x2,若f(x1)=x1<x2,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實根個數(shù)為( )
A.3 B.4 C.5 D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com