已知函數(shù)y=cos(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示,則(  )

A.ω=1,φ=

B.ω=1,φ=-

C.ω=2,φ=

D.ω=2,φ=-

 

D

【解析】因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719490848748753/SYS201411171949091905636988_DA/SYS201411171949091905636988_DA.001.png">=-=,所以T=π,所以ω=2,又×2+φ=,所以φ=-.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第五章 數(shù)列(解析版) 題型:填空題

已知函數(shù)f(x)對(duì)應(yīng)關(guān)系如表所示,數(shù)列{an}滿足a1=3,an+1=f(an),則a2015=________.

x

1

2

3

f(x)

3

2

1

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第九章計(jì)數(shù)原理與概率隨機(jī)變量及其分布(解析版) 題型:填空題

在2014年元旦期間,某市物價(jià)部門對(duì)本市五個(gè)商場(chǎng)銷售的某商品一天的銷售量及其價(jià)格進(jìn)行調(diào)查,五個(gè)商場(chǎng)的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如表所示:

價(jià)格x

9

9.5

10

10.5

11

銷售量y

11

10

8

6

5

 

通過分析,發(fā)現(xiàn)銷售量y與商品的價(jià)格x具有線性相關(guān)關(guān)系,則銷售量y關(guān)于商品的價(jià)格x的線性回歸方程為__________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

在△ABC中,2sin2=sinA,sin(B-C)=2cosBsinC,則=____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

函數(shù)y=cos2的圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于y軸對(duì)稱,則a的最小值為(  )

A.π B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:解答題

已知等腰梯形PDCB中(如圖),PB=3,DC=1,PD=BC=,A為PB邊上一點(diǎn),且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD(如圖).

(1)證明:平面PAD⊥平面PCD.

(2)試在棱PB上確定一點(diǎn)M,使截面AMC把幾何體分成的兩部分VPDCMA∶VMACB=2∶1.

(3)在M滿足(2)的情況下,判斷直線PD是否平行平面AMC.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:填空題

如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:

①直線BE與直線CF異面;

②直線BE與直線AF異面;

③直線EF∥平面PBC;

④平面BCE⊥平面PAD.

其中正確的有__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+(a-2)x+c的圖象如圖所示.

(1)求函數(shù)y=f(x)的解析式;

(2)若g(x)=-2ln x在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,數(shù)列{bn}滿足b1=1,且bn+1=bn+2.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)cn=an-bn,求數(shù)列{cn}的前2n項(xiàng)和T2n.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案