【題目】已知等差數(shù)列的前三項(xiàng)依次為a,3,5a,前n項(xiàng)和為Sn,且Sk=121.
(1)求a及k的值;
(2)設(shè)數(shù)列{bn}的通項(xiàng)bn=,證明數(shù)列{bn}是等差數(shù)列,并求其前n項(xiàng)和Tn.
【答案】(1)11;(2)
【解析】
(1)根據(jù)已知等差數(shù)列的前三項(xiàng)依次為a,3,5a,先求出,再根據(jù)Sk=121求出k的值.(2)先求出bn==n,再證明數(shù)列{bn}是等差數(shù)列,再利用等差數(shù)列的前n項(xiàng)和公式求Tn.
(1)設(shè)該等差數(shù)列為{an},則a1=a,a2=3,a3=5a,由已知有a+5a=6,得a1=a=1,公差d=2
所以Sk=ka1+·d=k+×2=.
由Sk=121=k2,解得k=11,故a=1,k=11.
(2)由(1)得Sn=則bn==n,故bn+1-bn==1,
即數(shù)列{bn}是首項(xiàng)為1,公差為1的等差數(shù)列,所以Tn=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棱長為1的正方體中,分別是的中點(diǎn).
①在直線上運(yùn)動(dòng)時(shí),三棱錐體積不變;
②在直線上運(yùn)動(dòng)時(shí),始終與平面平行;
③平面平面;
④連接正方體的任意的兩個(gè)頂點(diǎn)形成一條直線,其中與棱所在直線異面的有條;
其中真命題的編號(hào)是_______________.(寫出所有正確命題的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|< )的部分圖象如圖所示,下列說法正確的是( )
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱
C.將函數(shù)f(x)的圖象向左平移 個(gè)單位得到的函數(shù)圖象關(guān)于y軸對(duì)稱
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ+ ,kπ+ ](K∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一動(dòng)圓與定圓外切,同時(shí)和圓內(nèi)切,定點(diǎn)A(1,1).
(1)求動(dòng)圓圓心P的軌跡E的方程,并說明是何種曲線;
(2)M為E上任意一點(diǎn), F為E的左焦點(diǎn),試求的最小值;
(3)試求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時(shí),f(x)≥b恒成立,則a的取值范圍( )
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=﹣ ,當(dāng)1≤x≤2時(shí),f(x)=x,則f(﹣ )= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過點(diǎn),的直線傾斜角為,原點(diǎn)到該直線的距離為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)斜率大于零的直線過與橢圓交于E,F兩點(diǎn),若,求直線EF的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面上,我們?nèi)绻靡粭l直線去截正方形的一個(gè)角,那么截下的一個(gè)直角三角形,按圖所標(biāo)邊長,由勾股定理有:c2=a2+b2。設(shè)想正方形換成正方體,把截線換成如下圖的截面,這時(shí)從正方體上截下三條側(cè)棱兩兩垂直的三棱錐OLMN,如果用S1,S2,S3表示三個(gè)側(cè)面面積,S4表示截面面積,那么你類比得到的結(jié)論是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com