15.已知數(shù)列{an}的前n項和Sn滿足an=1-2Sn
(1)求證:數(shù)列{an}為等比數(shù)列;
(2)設(shè)函數(shù)$f(x)={log_{\frac{1}{3}}}x,{b_n}=f({a_1})+f({a_2})+…+f({a_n})$,求Tn=$\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}+…+\frac{1}{b_n}$.

分析 (1)數(shù)列{an}的前n項和Sn滿足an=1-2Sn.可得a1=1-2a1,解得a1.n≥2時,an-1=1-2Sn-1,可得an-an-1=-2an.即可證明.
(2)an=$(\frac{1}{3})^{n}$.f(an)=$lo{g}_{\frac{1}{3}}{a}_{n}$=n.可得bn,$\frac{1}{_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$.即可得出.

解答 (1)證明:∵數(shù)列{an}的前n項和Sn滿足an=1-2Sn.∴a1=1-2a1,解得a1=$\frac{1}{3}$.
n≥2時,an-1=1-2Sn-1,可得an-an-1=-2an.∴${a}_{n}=\frac{1}{3}{a}_{n-1}$.
∴數(shù)列{an}為等比數(shù)列,公比為$\frac{1}{3}$.
(2)解:an=$(\frac{1}{3})^{n}$.
f(an)=$lo{g}_{\frac{1}{3}}{a}_{n}$=n.
∴bn=1+2+…+n=$\frac{n(n+1)}{2}$.
∴$\frac{1}{_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
∴Tn=$\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}+…+\frac{1}{b_n}$=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.

點評 本題考査了等比數(shù)列的通項公式、“裂項求和法”、對數(shù)的運算性質(zhì),、對數(shù)運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.有A,B,C,D,E,F(xiàn)共6個集裝箱,準(zhǔn)備用甲、乙、丙三輛卡車運送,每臺卡車一次運兩個,若卡車甲不能運A箱,卡車乙不能運B箱,此外無其他任何限制:要把這6個集裝箱分配給這3臺卡車運送,則不同的分配方案的種數(shù)42(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=(\frac{x^2}{2}-kx)lnx+\frac{x^2}{4}$.
(Ⅰ)若f(x)在定義域內(nèi)單調(diào)遞增,求實數(shù)k的值;
(Ⅱ)若f(x)的極小值大于0,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知圓錐的母線長為4,母線與旋轉(zhuǎn)軸的夾角為30°,則該圓錐的側(cè)面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且滿足a1=$\frac{1}{2}$,2Sn-SnSn-1=1(n≥2).
(1)求S1,S2,S3,S4并猜想Sn的表達(dá)式(不必寫出證明過程);
(2)設(shè)bn=$\frac{n{a}_{n}}{1+30{a}_{n}}$,n∈N*,求bn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知邊長為2的正方形ABCD中,E為AD中點,連BE,則$\overrightarrow{BE}$•$\overrightarrow{EA}$=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=log3|x-t|是偶函數(shù),記$a=f({{{log}_{0.3}}4}),b=f({\sqrt{π^3}}),c=f({2-t})$則a,b,c的大小關(guān)系為( 。
A.a<c<bB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,若$cosB=\frac{1}{4},b=3$,sinC=2sinA,則△ABC的面積為$\frac{9\sqrt{15}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)y=f(x)的圖象在點(2,f(2))處的切線方程是x-2y+1=0,則f(2)+f'(2)的值是( 。
A.2B.1C.-$\frac{3}{2}$D.3

查看答案和解析>>

同步練習(xí)冊答案