【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取到的項(xiàng):第一次取1;第二次取2個(gè)連續(xù)的偶數(shù)24;第三次取3個(gè)連續(xù)的奇數(shù)5,7,9:第四次取4個(gè)連續(xù)的偶數(shù)10,12,14,16……按此規(guī)律一直取下去,得到一個(gè)子數(shù)列12,4,57,910,12,1416…,則在這個(gè)子數(shù)列中,第2014個(gè)數(shù)是(

A.3965B.3966C.3968D.3969

【答案】A

【解析】

本題是歸納推理,要從中找出數(shù)字遞增的規(guī)律,第組有連續(xù)個(gè)奇數(shù)和偶數(shù)構(gòu)造,其中奇偶性根的奇偶性相同,然后利用該規(guī)律解題.

記該數(shù)列1,2,4,5,7,9,10,12,14,16,17,,

1開始依次按如下規(guī)則取它的項(xiàng):第一次取1,第二次取2個(gè)連續(xù)偶數(shù)2、4;

第三次取3個(gè)連續(xù)奇數(shù)5、7、9;第四次取4個(gè)連續(xù)偶數(shù)1012、14、16;

第五次取5個(gè)連續(xù)奇數(shù)17、19、2123、25,

可知:第一組的最后一個(gè)數(shù)依次為:14,916,25,

歸納得到,每一組的最后一個(gè)數(shù)依次為:,,,,,

即第個(gè)組最后一個(gè)數(shù)為

由于,

所以位于第63組,倒數(shù)第三個(gè),

因?yàn)榈?/span>63組最后一個(gè)數(shù)為,

由組內(nèi)的差為2,得:

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)當(dāng)時(shí),直接寫出函數(shù)的單調(diào)區(qū)間(不需證明)

(3)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺(tái)中,底面,四邊形為菱形,,.

(1)若中點(diǎn),求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請(qǐng)問各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校從4名男教師和3名女教師中選3名派到3個(gè)不同國(guó)家(每個(gè)國(guó)家1名教師)交流訪問,要求這3名教師中男女都有,則不同的選派方案共有( )種

A.360B.150C.180D.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各對(duì)事件中,不是相互獨(dú)立事件的有( )

A.運(yùn)動(dòng)員甲射擊一次,“射中9環(huán)”與“射中8環(huán)”

B.甲乙兩運(yùn)動(dòng)員各射擊一次,“甲射中10環(huán)”與“乙射中9環(huán)”

C.甲乙兩運(yùn)動(dòng)員各射擊一次,“甲乙都射中目標(biāo)”與“甲乙都沒有射中目標(biāo)”

D.甲乙兩運(yùn)動(dòng)員各射擊一次,“至少有1人射中目標(biāo)”與“甲射中目標(biāo)但乙未射中目標(biāo)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓()的離心率為,圓軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下面左圖,在直角梯形中,,,,點(diǎn)上,且,將沿折起,得到四棱錐(如下面右圖).

1)求四棱錐的體積的最大值;

2)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案