【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請(qǐng)問各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

【答案】D

【解析】

設(shè)羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數(shù)列,,結(jié)合等比數(shù)列的性質(zhì)可求出答案.

設(shè)羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數(shù)列,且公比,,故,,.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),各項(xiàng)均不相等的數(shù)列滿足.令.給出下列三個(gè)命題:

(1)存在不少于3項(xiàng)的數(shù)列,使得;

(2)若數(shù)列的通項(xiàng)公式為,則對(duì)恒成立;

(3)若數(shù)列是等差數(shù)列,則對(duì)恒成立.

其中真命題的序號(hào)是(

A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCDADBC,ABACAD3,PABC4.

1)求異面直線PBCD所成角的余弦值;

2)求平面PAD與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)的圖象在點(diǎn)(2f (2))處的切線方程為16xy200.

1)求實(shí)數(shù)a、b的值;

2)求函數(shù)f(x)在區(qū)間[12]上的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 經(jīng)過點(diǎn)P(2,1),且離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點(diǎn),如果經(jīng)過定點(diǎn)請(qǐng)求出定點(diǎn)的坐標(biāo),如果不經(jīng)過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取到的項(xiàng):第一次取1;第二次取2個(gè)連續(xù)的偶數(shù)2,4;第三次取3個(gè)連續(xù)的奇數(shù)57,9:第四次取4個(gè)連續(xù)的偶數(shù)10,12,14,16……按此規(guī)律一直取下去,得到一個(gè)子數(shù)列1,2,4,5,7,9,1012,1416…,則在這個(gè)子數(shù)列中,第2014個(gè)數(shù)是(

A.3965B.3966C.3968D.3969

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三位數(shù)的各位數(shù)字中,有且僅有兩個(gè)數(shù)字一樣,我們就把這樣的三位數(shù)定義為單重?cái)?shù)”.例如:232114等,則不超過200單重?cái)?shù)中,從小到大排列第25個(gè)單重?cái)?shù)是(

A.166B.171C.181D.188

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個(gè)節(jié)氣,每相鄰兩個(gè)節(jié)氣之間的日影長度差為分;且“冬至”時(shí)日影長度最大,為1350分;“夏至”時(shí)日影長度最小,為160分則“立春”時(shí)日影長度為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,,P的中點(diǎn).

1)求平面將三棱柱分成的兩部分的體積之比;

2)求平面與平面ABC所成二面角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案