15.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$,則z=2x-y的最大值為(  )
A.-8B.-6C.-2D.4

分析 作出約束條件所對應的可行域,變形目標函數(shù),通過平移找出最優(yōu)解,代入目標函數(shù)求出最值.

解答 解:作出約束條件$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$所對應的可行域,
如圖△ABC:

變形目標函數(shù)可得y=2x-z,
平移直線y=2x可知,
當直線經(jīng)過點C(3,2)時,
直線的截距最小,z取最大值,
代值計算可得z=2x-y的最大值為
zmax=2×3-2=4.
故選:D.

點評 本題考查簡單線性規(guī)劃,準確作圖是解決問題的關鍵,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知F(1,0),直線l:x=-1,P為平面上的動點,過點P作l的垂線,垂足為點Q,且$\overrightarrow{QP}$•$\overrightarrow{QF}$=$\overrightarrow{FP}$•$\overrightarrow{FQ}$.
(1)求動點P的軌跡G的方程;
(2)點F關于原點的對稱點為M,過F的直線與G交于A、B兩點,且AB不垂直于x軸,直線AM交曲線G于C,直線BM交曲線C于D.
①證明直線AB與曲線CD的傾斜角互補;
②直線CD是否經(jīng)過定點?若經(jīng)過定點,求出這個定點,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知點$({2,\sqrt{3}})$在雙曲線$\frac{x^2}{4}-\frac{y^2}{a}=1({a>0})$的一條浙近線上,則a=( 。
A.$\sqrt{3}$B.3C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}是首項${a_1}=\frac{1}{3}$,公比$q=\frac{1}{3}$的等比數(shù)列.設${b_n}=2{log_{\frac{1}{3}}}{a_n}-1$(n∈N*).
(Ⅰ)求證:數(shù)列{bn}為等差數(shù)列;
(Ⅱ)設cn=an+b2n,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$,直線l的方程是x=ky+1(k∈R).
(Ⅰ)求曲線C的普通方程;
(Ⅱ)若直線l與曲線C相交所得的弦長是4,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右頂點分別為A1、A2,M是雙曲線上異于A1、A2的任意一點,直線MA1和MA2分別與y軸交于P,Q兩點,O為坐標原點,若|OP|,|OM|,|OQ|依次成等比數(shù)列,則雙曲線的離心率的取值范圍是(  )
A.$({\sqrt{2},+∞})$B.$[{\sqrt{2},+∞})$C.$({1,\sqrt{2}})$D.$({1,\sqrt{2}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知復數(shù)(1+i)z=1-i(i是虛數(shù)單位),則z的共軛復數(shù)的虛部是( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a>0,b>0,則“l(fā)og2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知數(shù)列{an}是等差數(shù)列且滿足a1=1,a3=7,設Sn為數(shù)列{(-1)nan}的前n項和,則S2017為( 。
A.-3025B.-3024C.2017D.9703

查看答案和解析>>

同步練習冊答案