解不等式:3x2-x-4>0.
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:把不等式3x2-x-4>0可化為(x+1)(3x-4)>0,求出解集即可.
解答: 解:不等式3x2-x-4>0可化為
(x+1)(3x-4)>0,
解得x<-1,或x>
4
3
;
∴原不等式的解集為{x|x<-1,或x>
4
3
}.
點(diǎn)評(píng):本題考查了求一元二次不等式的解集問題,解題時(shí)應(yīng)按照解一元二次不等式的基本步驟進(jìn)行解答即可,是容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為矩形,BC⊥平面ABE.平面BCE⊥平面ACE,AE=EB=BC=2
(Ⅰ)求證:AE⊥BE;
(Ⅱ)求二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=4an+2(n∈N*
(Ⅰ)設(shè)bn=an+1-2an,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)設(shè)cn=
an
2n
,求證數(shù)列{cn}是等差數(shù)列;
(Ⅲ)求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的首項(xiàng)a1=2,且an=2an-1-1(n?N+,n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan-n}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:f(x)=ax2+(b-8)x-a-ab,當(dāng)x∈(-3,2)時(shí),f(x)>0,x∈(-∞,-3)∪(2,+∞)時(shí),
f(x)<0.
(1)求y=f(x)的解析式
(2)解x的不等式ax2+bx+c≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的短半軸長(zhǎng)為1,點(diǎn)M(2,t)(t>0)是右準(zhǔn)線x=
a2
c
上的動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F為橢圓的右焦點(diǎn),過F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求ON的長(zhǎng).
(Ⅲ)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若各項(xiàng)為正數(shù)的數(shù)列{an)的前n項(xiàng)和為Sn,首項(xiàng)a1=1,a2=3,點(diǎn)P(
Sn+1
,Sn+2)(n∈N+)在函數(shù)y=(x+1)2的圖象上
(1)求a3
(2)求數(shù)列{an)的通項(xiàng)公式;
(3)設(shè)數(shù)列{cn)的通項(xiàng)公式為cn=
an
an+t
,是否存在整數(shù)t,使得數(shù)列{cn)中存在項(xiàng)ck(k≥3,k∈N+),滿足c1,c2,ck:構(gòu)成等差數(shù)列,若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=klnx,g(x)=ex
(1)若函數(shù)φ(x)=f(x)+x-
2
x
,求φ(x)的單調(diào)區(qū)間;
(2)設(shè)直線l為函數(shù)f(x)的圖象上一點(diǎn)A(x0,f(x0))處的切線.若在區(qū)間(2,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a>0,b>0,求證:a3+b3≥a2b+ab2
(2)已知a>0,b>0且
8
a
+
1
b
=1,求證a+2b≥18.

查看答案和解析>>

同步練習(xí)冊(cè)答案