如圖,四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,則下列命題中:
①AC⊥PB;
②AB平面PCD;
③PA與平面PBD所成的角等于PC與平面PBD所成的角;
④異面直線AB與PC所成的角等于異面直線DC與PA所成的角.
正確的命題為______.
精英家教網(wǎng)
對于①,因為PD⊥底面ABCD,得BD是PB在平面ABCD內(nèi)的射影
又因為ABCD為正方形,所以BD⊥AC,可得AC⊥PB,故①是真命題;
對于②,因為ABCD,AB?平面PCD且CD?平面PCD,
所以AB平面PCD,故②是真命題;
對于③,因為AD、CD分別為PA、PC在平面ABCD內(nèi)的射影
所以∠PAD、∠PCD分別是PA與平面PBD所成的角和PC與平面PBD所成的角.
又因為Rt△PAD≌Rt△PCD,所以∠PAD=∠PCD,可得③是真命題;
對于④,因為ABCD,可得∠PCD等于AB與PC所成的角,是一個銳角
而CD⊥平面PAD,可得CD⊥PA,即DC與PA所成的角為直角,
所以AB與PC所成的角不等于異面直線DC與PA所成的角,故④是假命題
故答案為:①②③
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點.求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點F是PB中點.
(Ⅰ)若E為BC中點,證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點A到平面PBD的距離;
(2)求θ的大;當平面ABCD內(nèi)有一個動點Q始終滿足PQ與AD的夾角為θ,求動點Q的軌跡方程.

查看答案和解析>>

同步練習冊答案