在△ABC中,D為AB的中點,動點P在△BCD的邊界及其內部運動,且滿足
AP
=x
AD
+y
AC
,則點(x,y)構成的平面區(qū)域的面積是( 。
A、
1
4
B、
1
2
C、
3
2
D、1
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:根據向量共線定理,建立不等式關系,利用數(shù)形結合即可得到結論.
解答: 解:由動點P在△BCD的邊界及其內部運動,由共線定理可得
0≤x≤2
0≤y≤1
x+y≥1
1
2
x+y≤1

作出點(x,y)構成的平面區(qū)域如圖:
則E(0,1),F(xiàn)(1,0),G(2,0),
則三角形EFG的面積為S=
1
2
×(2-1)×1=
1
2
,
故選:B
點評:本題主要考查線性規(guī)劃的應用,根據向量的共線定理,建立不等式關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

當a>0>b,c<d<0,給出以下三個結論:①ad<bc;②a+c2>b+d2;③b-c>a-c.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為(0,+∞)上的單調遞增函數(shù)f(x),滿足:?x∈(0,+∞),有f(f(x)-lnx)=1,則方程f(x)=-x2+4x-2解的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P是橢圓
x2
25
+
y2
16
=1上任一點,F(xiàn)1,F(xiàn)2為左右焦點
(1)求橢圓的頂點坐標,長軸長、短軸長及離心率;
(2)若∠F1PF2=60°,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司有男職員45名,女職員15名,按照分層抽樣的方法組建了一個4人的科研攻關小組.
(1)求科研攻關小組中男、女職員的人數(shù);
(2)經過一個月的學習、討論,在這個科研攻關組選出兩名職員做某項實驗,求選出的兩名職員中恰有一名女職員的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{xn}滿足xn+3=xn,xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1且a≠0),則數(shù)列{xn}的前2016項的和等于( 。
A、671B、760
C、1324D、1344

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正項等比數(shù)列{an}中,公比q∈(0,1),且滿足a3=2,a1a3+2a2a4+a3a5=25.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log2an,數(shù)列{bn}的前n項和為Sn,當
S1
1
+
S2
2
+…+
Sn
n
取最大值時,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題錯誤的是( 。
A、在△ABC中,“A>B”是“sinA>sinB”的充要條件
B、點(
π
8
,0)為函數(shù)f(x)=tan(2x+
π
4
)的一個對稱中心
C、若|
a
|=1,|
b
|=2,向量
a
與向量
b
的夾角為120°,則
b
在向量
a
上的投影為1
D、“sinα=sinβ”的充要條件是“α+β=(2k+1)π或α-β=2kπ(k∈Z)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P為橢圓上的任意一點,滿足|PF1|+|PF2|=8,△PF1F2的周長為12.
(1)求橢圓的方程;
(2)求
PF1
PF2
的最大值和最小值.

查看答案和解析>>

同步練習冊答案