(2013•長(zhǎng)寧區(qū)一模)已知二次函數(shù)f(x)=ax2+|a-1|x+a.
(1)函數(shù)f(x)在(-∞,-1)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)關(guān)于x不等式
f(x)
x
≥2在x∈[1,2]上恒成立,求實(shí)數(shù)a的取值范圍;
(3)函數(shù)g(x)=f(x)+
1-(a-1)x2
x
在(2,3)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
分析:(1)分a>0,a<0兩種情況求出二次函數(shù)f(x)的增區(qū)間,使(-∞,-1)為增區(qū)間的子集即可;
(2)
f(x)
x
≥2在x∈[1,2]上恒成立,等價(jià)于在[1,2]上
f(x)
x
的最小值大于等于2,利用導(dǎo)數(shù)即可求得其最小值;
(3)設(shè)2<x1<x2<3,則g(x1)<g(x2)恒成立,分離出參數(shù)a后轉(zhuǎn)化為求函數(shù)最值即可解決;
解答:解:顯然a≠0(1)若a>0,f(x)的增區(qū)間為-
|a-1|
2a
,+∞),而函數(shù)f(x)在(-∞,-1)上單調(diào)遞增,不符合題意;
若a<0,則f(x)=ax2+(1-a)x+a,其增區(qū)間為(-∞,-
1-a
2a
).
又f(x)在(-∞,-1)上單調(diào)遞增,所以有-
1-a
2a
≥-1,解得a
1
3
,
故a<0,所以實(shí)數(shù)a的取值范圍為:a<0.
(2)
f(x)
x
≥2即ax+
a
x
+|a-1|≥2,令g(x)=ax+
a
x
+|a-1|,
f(x)
x
≥2在x∈[1,2]上恒成立,等價(jià)于gmin(x)≥2,
g′(x)=a-
a
x2
=
a(x+1)(x-1)
x2
,
①當(dāng)a>0時(shí),x∈[1,2],g′(x)≥0,g(x)在[1,2]上遞增,
gmin(x)=g(1)=2a+|a-1|≥2,解得a≥1;
②當(dāng)a<0時(shí),g′(x)≤0,此時(shí)g(x)在[1,2]上遞減,
gmin(x)=g(2)=2a+
a
2
+|a-1|=
3
2
a+1≥2,解得a
2
3
,(舍)
綜上,實(shí)數(shù)a的取值范圍為a≥1.
(3)g(x)=ax2+
1
x
+a在(2,3)上是增函數(shù),
設(shè)2<x1<x2<3,則g(x1)<g(x2),
ax12+
1
x1
+a<ax22+
1
x2
+a,a(x1+x2)(x1-x2)<
x1-x2
x1x2
,
因?yàn)?<x1<x2<3,所以a>
1
x1x2(x1+x2)
,
1
x1x2(x1+x2)
∈(
1
54
1
16
),
所以a
1
16
點(diǎn)評(píng):本題考查二次函數(shù)的單調(diào)性及函數(shù)恒成立問(wèn)題,考查分類(lèi)討論思想,考查學(xué)生靈活運(yùn)用所學(xué)知識(shí)分析解決問(wèn)題的能力,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過(guò)3000件,且產(chǎn)品能全部銷(xiāo)售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷(xiāo)售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:Q(x)=170-0.05x,試問(wèn)生產(chǎn)多少件產(chǎn)品,總利潤(rùn)最高?(總利潤(rùn)=總銷(xiāo)售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),則f(-2)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)(2-
x
8 展開(kāi)式中含x4項(xiàng)的系數(shù)為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)已知函數(shù)f(x)=
1+x
+
1-x

(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)=
a
x
•[f2(x)-2]+f(x)(a為實(shí)數(shù)),求F(x)在a<0時(shí)的最大值g(a);
(3)對(duì)(2)中g(shù)(a),若-m2+2tm+
2
≤g(a)對(duì)a<0所有的實(shí)數(shù)a及t∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)“φ=
π
2
”是“函數(shù)y=sin(x+φ)為偶函數(shù)的”( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案