9粒種子分種在3個(gè)坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種.若一個(gè)坑里的種子都沒(méi)發(fā)芽,則這個(gè)坑需要補(bǔ)種,假定每個(gè)坑至多補(bǔ)種一次,每補(bǔ)種1個(gè)坑需10元,用ξ表示補(bǔ)種費(fèi)用,寫(xiě)出ξ的分布列并求ξ的數(shù)學(xué)期望.(精確到0.01)

解析:因?yàn)閱慰觾?nèi)的3粒種子都不發(fā)芽的概率為(1-0.5)3=,所以單坑不需要補(bǔ)種的概率為1=.

3個(gè)坑都不需要補(bǔ)種的概率×()0×()3=0.670,

恰有1個(gè)坑需要補(bǔ)種的概率為×()1×()2=0.287,

恰有2個(gè)坑需要補(bǔ)種的概率為×()2×()1=0.041,

3個(gè)坑都需要補(bǔ)種的概率為×()3×()0=0.002.

補(bǔ)種費(fèi)用ξ的分布列為

ξ

0

10

20

30

P

0.670

0.287

0.041

0.002

Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.75.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、9粒種子分種在3個(gè)坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種;若一個(gè)坑內(nèi)的種子都沒(méi)發(fā)芽,則這個(gè)坑需要補(bǔ)種.假定每個(gè)坑至多補(bǔ)種一次,每補(bǔ)種1個(gè)坑需10元,用ξ表示補(bǔ)種費(fèi)用,寫(xiě)出ξ的分布列并求ξ的數(shù)學(xué)期望.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

05年全國(guó)卷Ⅰ理)(12分)

9粒種子分種在3個(gè)坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為,若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種,若一個(gè)坑內(nèi)的種子都沒(méi)發(fā)芽,則這個(gè)坑需要補(bǔ)種.假定每個(gè)坑至多補(bǔ)種一次,每補(bǔ)種1個(gè)坑需10元,用ξ表示補(bǔ)種費(fèi)用,寫(xiě)出ξ的分布列并求ξ的數(shù)學(xué)期望.(精確到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9粒種子分種在3個(gè)坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種,若一個(gè)坑里的種子都沒(méi)發(fā)芽,則這個(gè)坑需要補(bǔ)種,假定每個(gè)坑至多補(bǔ)種一次,每補(bǔ)種1個(gè)坑需10元,用ξ表示補(bǔ)種費(fèi)用,寫(xiě)出ξ的分布列并求ξ的數(shù)學(xué)期望.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005年山西省高考數(shù)學(xué)試卷Ⅰ(理)(解析版) 題型:解答題

9粒種子分種在3個(gè)坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種;若一個(gè)坑內(nèi)的種子都沒(méi)發(fā)芽,則這個(gè)坑需要補(bǔ)種.假定每個(gè)坑至多補(bǔ)種一次,每補(bǔ)種1個(gè)坑需10元,用ξ表示補(bǔ)種費(fèi)用,寫(xiě)出ξ的分布列并求ξ的數(shù)學(xué)期望.(精確到0.01)

查看答案和解析>>

同步練習(xí)冊(cè)答案