精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1的各條棱長都相等,則異面直線AB1和A1C所成的角的余弦值大小是
 
分析:延長BA到D,使AD=AB,根據(jù)異面直線所成角的定義可知∠DA1C就是異面直線AB1和A1C所成的角,解三角形A1DC,利用余弦定理可求得此角的余弦值.
解答:解:延長CA到D,使得AD=AC,則ADA1B1為平行四邊形,
∴AB1∥A1D,
∴∠DA1C就是異面直線AB1和A1C所成的角,
又三角形ABC為等邊三角形,設(shè)AB=AA1=1,∠CAD=120°
則CD=
1+1-2×1×1×(-
1
2
)
=
3
;A1C=A1D=
2

在△A1CD中,cos∠DA1C=
2+2-3
2
×
2
=
1
4

故答案是:
1
4

精英家教網(wǎng)
點評:本小題主要考查了直三棱柱ABC-A1B1C1的性質(zhì)、異面直線所成的角、異面直線所成的角的求法,考查轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1各棱長都為a,P為線段A1B上的動點.
(Ⅰ)試確定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的底面邊長為2cm,高位5cm,一質(zhì)點自A點出發(fā),沿著三棱柱的側(cè)面繞行兩周到達(dá)A1點的最短路線的長為
13
13
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的各條棱長都為a,P為A1B上的點.
(1)試確定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大。
(3)在(2)的條件下,求C1到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1,D是AC的中點,C1DC=600,則異面直線AB1與C1D所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)如圖,已知正三棱柱ABC-A1B1C1的所有棱長均為a,截面AB1C和A1BC1相交于DE,則三棱錐B-B1DE的體積為
3
48
a3
3
48
a3

查看答案和解析>>

同步練習(xí)冊答案