如圖,長方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1,E,F(xiàn),G分別是DD1,AB,CC1的中點,則異面直線A1E與GF所成角為(  )
分析:連接B1G,EG,先利用長方形的特點,證明四邊形A1B1GE為平行四邊形,從而A1E∥B1G,所以∠B1GF即為異面直線A1E與GF所成的角,再在三角形B1GF中,分別計算三邊的長度,利用勾股定理即可得此角的大小
解答:解:如圖:連接B1G,EG
∵E,G分別是DD1,CC1的中點,
∴A1B1∥EG,A1B1=EG,∴四邊形A1B1GE為平行四邊形
∴A1E∥B1G,∴∠B1GF即為異面直線A1E與GF所成的角
在三角形B1GF中,B1G=
B1C12+C1G2
=
1+1
=
2

FG=
FC2+C G2
=
2+1
=
3

B1F=
B1B2+BF2
=
4+1
=
5

∵B1G2+FG2=B1F2
∴∠B1GF=90°
∴異面直線A1E與GF所成角為90°
故選 D
點評:本題考查了空間異面直線所成的角的作法、證法、算法,長方體的性質及其中的數(shù)量關系的應用,將空間問題轉化為平面問題的思想方法
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、如圖,長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1
(3)求證:直線PB1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

15、如圖,長方體ABCD-A1B1C1D1中被截去一部分,
(1)其中EF∥A1D1.剩下的幾何體是什么?截取的幾何體是什么?
(2)若FH∥EG,但FH<EG,截取的幾何體是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,其中AB=BC,E,F(xiàn)分別是AB1,BC1的中點,則以下結論中
①EF與BB1垂直;
②EF⊥平面BCC1B1;
③EF與C1D所成角為45°;
④EF∥平面A1B1C1D1
不成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,P是線段AC的中點.
(1)判斷直線B1P與平面A1C1D的位置關系并證明;
(2)若F是CD的中點,AB=BC=1,且四面體A1C1DF體積為
2
12
,求三棱錐F-A1C1D的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知如圖:長方體ABCD-A1B1C1D1中,交于頂點A的三條棱長別為AD=3,AA1=4,AB=5.一天,小強觀察到在A處有一只螞蟻,發(fā)現(xiàn)頂點C1處有食物,于是它沿著長方體的表面爬行去獲取食物,則螞蟻爬行的最短路程是(  )
A、
74
B、5
2
C、4
5
D、3
10

查看答案和解析>>

同步練習冊答案