已知三棱柱ABC-A1B1C1的側棱與底面垂直,體積為,底面是邊長為的正三角形,若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為( )
A.
B.
C.
D.
【答案】分析:利用三棱柱ABC-A1B1C1的側棱與底面垂直和線面角的定義可知,∠APA1為PA與平面A1B1C1所成角,即為∠APA1為PA與平面ABC所成角.利用三棱錐的體積計算公式可得AA1,再利用正三角形的性質可得A1P,在Rt△AA1P中,利用tan∠APA1=即可得出.
解答:解:如圖所示,
∵AA1⊥底面A1B1C1,∴∠APA1為PA與平面A1B1C1所成角,
∵平面ABC∥平面A1B1C1,∴∠APA1為PA與平面ABC所成角.
==
∴V三棱柱ABC-A1B1C1==,解得
又P為底面正三角形A1B1C1的中心,∴==1,
在Rt△AA1P中,,

故選B.
點評:熟練掌握三棱柱的性質、體積計算公式、正三角形的性質、線面角的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三棱柱ABC-A?B?C?所有的棱長均為2,且側棱與底面垂直,則該三棱柱的體積是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
CG
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東高二第二次月考文科數(shù)學試卷(解析版) 題型:填空題

已知三棱柱ABC-A´B´C´所有的棱長均為2,且側棱與底面垂直,則該三棱柱的體積

            

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱柱ABC-A?B?C?所有的棱長均為2,且側棱與底面垂直,則該三棱柱的體積是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省云浮市高二(上)12月月考數(shù)學試卷(文科)(解析版) 題型:填空題

已知三棱柱ABC-A´B´C´所有的棱長均為2,且側棱與底面垂直,則該三棱柱的體積是   

查看答案和解析>>

同步練習冊答案