【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)若點在直線上,求直線的極坐標方程;

(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.

【答案】1

2

【解析】

1)利用消參法以及點求解出的普通方程,根據(jù)極坐標與直角坐標的轉化求解出直線的極坐標方程;

2)將的坐標設為,利用點到直線的距離公式結合三角函數(shù)的有界性,求解出取最小值時對應的值.

(1)消去參數(shù)普通方程為,

代入,可得,即

所以的極坐標方程為

(2)的直角坐標方程為

直線的直角坐標方程

的直角坐標為

在直線上,∴的最小值為到直線的距離的最小值

,∴當,取得最小值

,∴

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】關于漸近線方程為的雙曲線有下述四個結論:①實軸長與虛軸長相等,②離心率是③過焦點且與實軸垂直的直線被雙曲線截得的線段長與實軸長相等,④頂點到漸近線與焦點到漸近線的距離比值為.其中所有正確結論的編號(

A.①②B.①③C.①②③D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,已知,,側面.

)求直線與底面所成角正切值;

)在棱(不包含端點)上確定一點E的位置,

使得(要求說明理由);

)在()的條件下,若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內角A,B,C所對的邊分別為a,b,c,已知asinB=bsin2A.

1)求角A;

2)若a=5,△ABC的面積為,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線與曲線,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)寫出曲線,的極坐標方程;

2)在極坐標系中,已知,的公共點分別為,,,當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)證明:當時,;

(2)若函數(shù)只有一個零點,求正實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某地區(qū)2012年至2018年生活垃圾無害化處理量(單位:萬噸)的折線圖.

注:年份代碼分別表示對應年份.

1)由折線圖看出,可用線性回歸模型擬合的關系,請用相關系數(shù)線性相關較強)加以說明;

2)建立的回歸方程(系數(shù)精確到0.01),預測2019年該區(qū)生活垃圾無害化處理量.

(參考數(shù)據(jù)),,,,,,.

(參考公式)相關系數(shù),在回歸方程中斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】波羅尼斯(古希臘數(shù)學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網(wǎng)羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數(shù)k)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有,,則當的面積最大時,AC邊上的高為_______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線y軸交于點A,與拋物線交于P,Q,點B與點A關于x軸對稱,連接QB,BP并延長分別與x軸交于點M,N.

(1),求拋物線C的方程;

(2)若,求外接圓的方程.

查看答案和解析>>

同步練習冊答案