等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=
(an+1)2
4
,則S20的值為
0,或
320-1
2
0,或
320-1
2
分析:由等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=
(an+1)2
4
,知a1=
(a1+1)2
4
,解得a1=1,所以1+a2=
(a2+1)2
4
,解得a2=-1,或a2=3,由此能求出S20的值.
解答:解:∵等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=
(an+1)2
4

a1=
(a1+1)2
4
,解得a1=1,
1+a2=
(a2+1)2
4
,
解得a2=-1,或a2=3,
當(dāng)a2=-1時,q=-1,S20=
1×[1-(-1)20]
1-(-1)
=0.
當(dāng)a2=3時,q=3,S20=
1×(1-320)
1-3
=
320-1
2

故答案為:0,或
320-1
2
點(diǎn)評:本題考查等比數(shù)列的前n項(xiàng)和公式的應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意等價轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)敘述并證明等比數(shù)列的前n項(xiàng)和公式;
(2)已知Sn是等比數(shù)列{an} 的前n項(xiàng)和,S3,S9,S6成等差數(shù)列,求證:a1+k,a7+k,a4+k(k∈N)成等差數(shù)列;
(3)已知Sn是正項(xiàng)等比數(shù)列{an} 的前n項(xiàng)和,公比0<q≤1,求證:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn是等比數(shù)列{an}的前n項(xiàng)和,對于任意正整數(shù)n,恒有Sn>0,則等比數(shù)列{an}的公比q的取值范圍為
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍(lán)山縣模擬)統(tǒng)計(jì)某校高三年級100名學(xué)生的數(shù)學(xué)月考成績,得到樣本頻率分布直方圖如下圖所示,已知前4組的頻數(shù)分別是等比數(shù)列{an}的前4項(xiàng),后6組的頻數(shù)分別是等差數(shù)列{bn}的前6項(xiàng),
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)m、n為該校學(xué)生的數(shù)學(xué)月考成績,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和,S2=4,S4=20則數(shù)列的首項(xiàng)a1=( 。

查看答案和解析>>

同步練習(xí)冊答案