【題目】某公司為了對一種新產(chǎn)品進行合理定價,將該產(chǎn)品按亊先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
銷量V(件) | 90 | 84 | 83 | 80 | 75 | 68 |
由表中數(shù)據(jù).求得線性回歸方程為 =﹣4x+a.若在這些樣本點中任取一點,則它在回歸直線右上方的概率為
( )
A.
B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C1的參數(shù)方程為 ,曲線C2的極坐標方程為 .
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)設(shè)P為曲線C1上一點,Q曲線C2上一點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx﹣sin2x﹣3cos2x+1.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)y=f(x)在區(qū)間[0,a]上恰有3個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x+cos2x.
(1)當x∈[0, ]時,求f(x)的取值范圍;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢測某種產(chǎn)品的質(zhì)量(單位:千克),抽取了一個容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合計 | N | 1 |
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產(chǎn)品中隨機抽取一件,試估計這件產(chǎn)品的質(zhì)量少于25千克的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題.
(1)求實數(shù)m的取值集合M;
(2)設(shè)不等式 的解集為N,若x∈N是x∈M的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知銳角△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且 =(a,b+c), .
(1)求角A;
(2)若a=3,求△ABC面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖四棱錐E﹣ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC. (Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com