已知函數(shù)f(x)=x2+bx+c(b、c∈R)且當(dāng)x≤1時(shí),f(x)≥0,當(dāng)1≤x≤3時(shí),f(x)≤0恒成立.
(1)求b、c之間的關(guān)系式;
(2)當(dāng)c≥3時(shí),是否存在實(shí)數(shù)m使得g(x)=f(x)-m2x在區(qū)間(0,+∞)上是單調(diào)函數(shù)?若存在,求出m的取值范圍;若不存在,請說明理由.
分析:(1)由f(1)=0可得答案.
(2)先假設(shè)存在m滿足條件,再寫出函數(shù)g(x)的解析式故居其在區(qū)間(0,+∞)上單調(diào)進(jìn)行解題.
解答:解:(1)由已知f(1)≥0與f(1)≤0同時(shí)成立,則必有f(1)=0,故b+c+1=0.
(2)假設(shè)存在實(shí)數(shù)m,使?jié)M足題設(shè)的g(x)存在.
∵g(x)=f(x)-m2x=x2+(b-m2)x+c開口向上,且在[
m2-b
2
,+∞)上單調(diào)遞增,
m2-b
2
≤0.∴b≥m2≥0.
∵c≥3,∴b=-(c+1)≤-4.
這與上式矛盾,從而能滿足題設(shè)的實(shí)數(shù)m不存在.
點(diǎn)評:本題主要考查一元二次函數(shù)的圖象與性質(zhì).一元二次函數(shù)的對稱性、最值、單調(diào)性是每年高考必考內(nèi)容,要引起重視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案