9.已知函數(shù)f(x)=log2$\frac{x-3}{x+2}$.
(1)求函數(shù)f(x)的定義域;
(2)當(dāng)x為何值時,等式f(x)+log2(x-4)=1成立?

分析 (1)根據(jù)對數(shù)函數(shù)的性質(zhì),得到關(guān)于x的不等式,解出即可;
(2)根據(jù)對數(shù)的運算得到關(guān)于x的方程組,解出即可.

解答 解:(1)由題意得:$\frac{x-3}{x+2}$>0,
即(x-3)(x+2)>0,
解得:x>3或x<-2,
故函數(shù)的定義域是(-∞,-2)∪(3,+∞);
(2)f(x)+log2(x-4)=1,
即log2$\frac{x-3}{x+2}$+log2(x-4)=1,
即$\left\{\begin{array}{l}{\frac{x-3}{x+2}>0}\\{x-4>0}\\{\frac{(x-3)(x-4)}{x+2}=2}\end{array}\right.$,
解得:x=8.

點評 本題考查了對數(shù)的運算,對數(shù)函數(shù)的性質(zhì)以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$f(x)={log_{\frac{1}{2}}}\frac{x^2}{x-1}$的最大值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{m}$=(x,x+2)與向量$\overrightarrow{n}$=(1,3x)是共線向量,則x等于( 。
A.$\frac{2}{3}$或-1B.-$\frac{2}{3}$或1C.$\frac{3}{2}$或-1D.-$\frac{3}{2}$或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若三邊長分別為3,5,a的三角形是銳角三角形,則a的取值范圍為(4,$\sqrt{34}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若$p:({x^2}+6x+8)\sqrt{x+3}≥0$;q:x=-3,則命題p是命題q的必要而不充分條件 (填“充分而不必要、必要而不充分、充要、既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)i是虛數(shù)單位,復(fù)數(shù)1-3i的虛部是( 。
A.1B.-3iC.-3D.3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知命題p:x2+4x+3≥0,q:x∈Z,且“p∧q”與“非q”同時為假命題,則x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y-x≤2}\\{x+y≥2}\\{3x-y≤3}\end{array}\right.$,則2x-y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某多面體的三視圖如圖所示,則該多面體的體積為( 。
A.2B.$\frac{20}{3}$C.$\frac{22}{3}$D.4

查看答案和解析>>

同步練習(xí)冊答案