分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用x2+y2的幾何意義進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,
x2+y2的幾何意義是區(qū)域內(nèi)的點(diǎn)P到原點(diǎn)距離的平方,
由圖象知,當(dāng)OP垂直直線x+y=2時(shí),
此時(shí)OP的距離最小,
此時(shí)O到直線x+y-2=0得距離d=$\frac{|-2|}{\sqrt{2}}$=$\sqrt{2}$,
則x2+y2的最小值為d2=($\sqrt{2}$)2=2,
故答案為:2
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合以及點(diǎn)到直線的距離公式是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3∉A | B. | {$\sqrt{2}$}⊆A | C. | $\sqrt{2}$∈A | D. | $\sqrt{2}$∉A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{e}$ | B. | $\frac{1}{e-1}$ | C. | $1-\frac{1}{e}$ | D. | $\frac{e-2}{e-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4,6} | B. | {4,6} | C. | {1,3,5} | D. | {1,2,3,4,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | π | C. | $\frac{\sqrt{π}}{2}$ | D. | $\frac{\sqrt{3π}}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com