A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
分析 根據(jù)充分必要條件的定義分別證明其充分性和必要性即可.
解答 解:若a+b<0,則a<-b,b<-a,
而f(x)在R遞減,
故f(a)>f(-b),f(b)>f(-a),
故f(a)+f(b)>f(-a)+f(-b),
是充分條件,
若f(a)+f(b)>f(-a)+f(-b),則a+b<0的逆否命題是:
若a+b≥0,則f(a)+f(b)≤f(-a)+f(-b),
由a+b≥0,得:a≥-b,b≥-a,
而f(x)在R遞減,
故f(a)≤f(-b),f(b)≤f(-a),
故f(a)+f(b)≤f(-a)+f(-b)成立,
故若f(a)+f(b)>f(-a)+f(-b),則a+b<0,是必要條件,
故a+b<0是f(a)+f(b)>f(-a)+f(-b)的充要條件,
故選:C.
點(diǎn)評(píng) 本題考查了充分必要條件的定義,考查函數(shù)的單調(diào)性問(wèn)題以及原命題和起逆否命題的等價(jià)關(guān)系,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,1] | B. | $[{0,\frac{5}{2}}]$ | C. | $[{2,\frac{5}{2}}]$ | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com