A. | $[-\frac{5π}{6},\frac{7π}{6}]$ | B. | $[\frac{7π}{6},\frac{19π}{6}]$ | C. | $[-\frac{2π}{3},\frac{4π}{3}]$ | D. | $[-\frac{17π}{6},-\frac{5π}{6}]$ |
分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求得函數(shù)g(x)的一個單調(diào)遞減區(qū)間.
解答 解:把函數(shù)$f(x)=\sqrt{2}sin(2x-\frac{π}{4})$的圖象上每個點的橫坐標擴大到原來的4倍,可得y=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$)的圖象,
再向左平移$\frac{π}{3}$,得到函數(shù)g(x)=$\sqrt{2}$sin[$\frac{1}{2}$(x+$\frac{π}{3}$)-$\frac{π}{4}$]=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{π}{12}$)的圖象,
令2kπ+$\frac{π}{2}$≤$\frac{1}{2}$x-$\frac{π}{12}$≤2kπ+$\frac{3π}{2}$,求得4kπ+$\frac{7π}{6}$≤x≤4kπ+$\frac{19π}{6}$,
故函數(shù)g(x)的單調(diào)遞減區(qū)間為[4kπ+$\frac{7π}{6}$,4kπ+$\frac{19π}{6}$],k∈Z,
令k=0,可得函數(shù)g(x)的一個單調(diào)遞減區(qū)間為[$\frac{7π}{6}$,$\frac{19π}{6}$],
故選:B.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $±\sqrt{3}$ | B. | ±1 | C. | $\sqrt{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{6}$ | B. | $\sqrt{7}$ | C. | 5$\sqrt{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com