已知四棱錐的底面是正方形,底面,上的任意一點.

(1)求證:平面平面;
(2)當時,求二面角的大小.
(1)證明詳見解析;(2).

試題分析:(1)證明平面內的直線垂直平面內的兩條相交直線,即可證明平面平面;(2)為方便計算,不妨設,先以為原點,所在的直線分別為軸建立空間直角坐標系,寫給相應點的坐標,然后分別求出平面和平面的一個法向量,接著計算出這兩個法向量夾角的余弦值,根據(jù)二面角的圖形與計算出的余弦值,確定二面角的大小即可.
試題解析:(1)底面,所以               2分
底面是正方形,所以                   4分
所以平面平面
所以平面平面                        5分
(2)證明:點為坐標原點,所在的直線分別為軸,建立空間直角坐標系,設
由題意得,            6分
,又
設平面的法向量為,則
,令,則,          8分

設平面的法向量為,則
,令,則           10分
設二面角的平面角為,則.
顯然二面角的平面角為為鈍角,所以
即二面角的大小為                 12分.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,ABEC=2,AEBE.

(1)求證:平面EAB⊥平面ABCD;
(2)求直線AE與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在長方體中,點為棱上任意一點,,.

(Ⅰ)求證:平面平面;
(Ⅱ)若點為棱的中點,點為棱的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P—ABCD中,為邊長為2的正三角形,底面ABCD為菱形,且平面PAB⊥平面ABCD,,E為PD點上一點,滿足

(1)證明:平面ACE平面ABCD;
(2)求直線PD與平面ACE所成角正弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,ACBC=1,則異面直線A1BAC所成角的余弦值是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,MN分別是A1B1BB1的中點,那么直線AMCN所成角的余弦值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若P是平面外一點,A為平面內一點,為平面的一個法向量,則點P到平面的距離是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,己知三棱柱的側棱與底面垂直,,MN分別是的中點,P點在上,且滿足
(I)證明:
(II)當取何值時,直線PN與平面ABC所成的角最大?并求出該最大角的正切值;
(III)  在(II)條件下求P到平而AMN的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知向量,,若共線,則的值為
            B              C             D 

查看答案和解析>>

同步練習冊答案